/** * Univariate GenPolynomial algebraic partial fraction decomposition, Absolute factorization or * Rothstein-Trager algorithm. * * @param A univariate GenPolynomial, deg(A) < deg(P). * @param P univariate squarefree GenPolynomial, gcd(A,P) == 1. * @return partial fraction container. */ public PartialFraction<C> baseAlgebraicPartialFraction(GenPolynomial<C> A, GenPolynomial<C> P) { if (P == null || P.isZERO()) { throw new RuntimeException(" P == null or P == 0"); } if (A == null || A.isZERO()) { throw new RuntimeException(" A == null or A == 0"); // PartialFraction(A,P,al,pl,empty,empty) } // System.out.println("\nP_base_algeb_part = " + P); GenPolynomialRing<C> pfac = P.ring; // K[x] if (pfac.nvar > 1) { // System.out.println("facs_base_irred: univ"); throw new RuntimeException("only for univariate polynomials"); } if (!pfac.coFac.isField()) { // System.out.println("facs_base_irred: field"); throw new RuntimeException("only for field coefficients"); } List<C> cfactors = new ArrayList<C>(); List<GenPolynomial<C>> cdenom = new ArrayList<GenPolynomial<C>>(); List<AlgebraicNumber<C>> afactors = new ArrayList<AlgebraicNumber<C>>(); List<GenPolynomial<AlgebraicNumber<C>>> adenom = new ArrayList<GenPolynomial<AlgebraicNumber<C>>>(); // P linear if (P.degree(0) <= 1) { cfactors.add(A.leadingBaseCoefficient()); cdenom.add(P); return new PartialFraction<C>(A, P, cfactors, cdenom, afactors, adenom); } List<GenPolynomial<C>> Pfac = baseFactorsSquarefree(P); // System.out.println("\nPfac = " + Pfac); List<GenPolynomial<C>> Afac = engine.basePartialFraction(A, Pfac); GenPolynomial<C> A0 = Afac.remove(0); if (!A0.isZERO()) { throw new RuntimeException(" A0 != 0: deg(A)>= deg(P)"); } // algebraic and linear factors int i = 0; for (GenPolynomial<C> pi : Pfac) { GenPolynomial<C> ai = Afac.get(i++); if (pi.degree(0) <= 1) { cfactors.add(ai.leadingBaseCoefficient()); cdenom.add(pi); continue; } PartialFraction<C> pf = baseAlgebraicPartialFractionIrreducibleAbsolute(ai, pi); // PartialFraction<C> pf = baseAlgebraicPartialFractionIrreducible(ai,pi); cfactors.addAll(pf.cfactors); cdenom.addAll(pf.cdenom); afactors.addAll(pf.afactors); adenom.addAll(pf.adenom); } return new PartialFraction<C>(A, P, cfactors, cdenom, afactors, adenom); }
/** Test object multiplication. */ public void testMultiplication() { a = fac.random(ll); assertTrue("not isZERO( a )", !a.isZERO()); b = fac.random(ll); assertTrue("not isZERO( b )", !b.isZERO()); c = b.multiply(a); d = a.multiply(b); assertTrue("not isZERO( c )", !c.isZERO()); assertTrue("not isZERO( d )", !d.isZERO()); // System.out.println("a = " + a); // System.out.println("b = " + b); e = d.subtract(c); assertTrue("isZERO( a*b-b*a ) " + e, e.isZERO()); assertTrue("a*b = b*a", c.equals(d)); assertEquals("a*b = b*a", c, d); c = fac.random(ll); // System.out.println("c = " + c); d = a.multiply(b.multiply(c)); e = (a.multiply(b)).multiply(c); // System.out.println("d = " + d); // System.out.println("e = " + e); // System.out.println("d-e = " + d.subtract(c) ); assertEquals("a(bc) = (ab)c", d, e); assertTrue("a(bc) = (ab)c", d.equals(e)); BigComplex x = a.leadingBaseCoefficient().inverse(); c = a.monic(); d = a.multiply(x); assertEquals("a.monic() = a(1/ldcf(a))", c, d); BigComplex y = b.leadingBaseCoefficient().inverse(); c = b.monic(); d = b.multiply(y); assertEquals("b.monic() = b(1/ldcf(b))", c, d); e = new GenPolynomial<BigComplex>(fac, y); d = b.multiply(e); assertEquals("b.monic() = b(1/ldcf(b))", c, d); d = e.multiply(b); assertEquals("b.monic() = (1/ldcf(b) (0))*b", c, d); }
/** * Real algebraic number magnitude. * * @param iv root isolating interval for f, with f(left) * f(right) < 0. * @param f univariate polynomial, non-zero. * @param g univariate polynomial, gcd(f,g) == 1. * @param eps length limit for interval length. * @return g(iv) . */ public C realMagnitude(Interval<C> iv, GenPolynomial<C> f, GenPolynomial<C> g, C eps) { if (g.isZERO() || g.isConstant()) { return g.leadingBaseCoefficient(); } Interval<C> v = invariantMagnitudeInterval(iv, f, g, eps); return realIntervalMagnitude(v, f, g, eps); }
/** * Real root bound. With f(M) * f(-M) != 0. * * @param f univariate polynomial. * @return M such that -M < root(f) < M. */ public C realRootBound(GenPolynomial<C> f) { if (f == null) { return null; } RingFactory<C> cfac = f.ring.coFac; C M = cfac.getONE(); if (f.isZERO() || f.isConstant()) { return M; } C a = f.leadingBaseCoefficient().abs(); for (C c : f.getMap().values()) { C d = c.abs().divide(a); if (M.compareTo(d) < 0) { M = d; } } // works also without this case, only for optimization // to use rational number interval end points // can fail if real root is in interval [r,r+1] // for too low precision or too big r, since r is approximation if ((Object) M instanceof RealAlgebraicNumber) { RealAlgebraicNumber Mr = (RealAlgebraicNumber) M; BigRational r = Mr.magnitude(); M = cfac.fromInteger(r.numerator()).divide(cfac.fromInteger(r.denominator())); } M = M.sum(f.ring.coFac.getONE()); // System.out.println("M = " + M); return M; }
/** * Real algebraic number magnitude. * * @param iv root isolating interval for f, with f(left) * f(right) < 0, with iv such that * |g(a) - g(b)| < eps for a, b in iv. * @param f univariate polynomial, non-zero. * @param g univariate polynomial, gcd(f,g) == 1. * @param eps length limit for interval length. * @return g(iv) . */ public C realIntervalMagnitude(Interval<C> iv, GenPolynomial<C> f, GenPolynomial<C> g, C eps) { if (g.isZERO() || g.isConstant()) { return g.leadingBaseCoefficient(); } RingFactory<C> cfac = g.ring.coFac; C c = iv.left.sum(iv.right); c = c.divide(cfac.fromInteger(2)); C ev = PolyUtil.<C>evaluateMain(cfac, g, c); // System.out.println("ev = " + ev); return ev; }
/** * Magnitude bound. * * @param iv interval. * @param f univariate polynomial. * @return B such that |f(c)| < B for c in iv. */ public C magnitudeBound(Interval<C> iv, GenPolynomial<C> f) { if (f == null) { return null; } if (f.isZERO()) { return f.ring.coFac.getONE(); } if (f.isConstant()) { return f.leadingBaseCoefficient().abs(); } GenPolynomial<C> fa = f.map( new UnaryFunctor<C, C>() { public C eval(C a) { return a.abs(); } }); // System.out.println("fa = " + fa); C M = iv.left.abs(); if (M.compareTo(iv.right.abs()) < 0) { M = iv.right.abs(); } // System.out.println("M = " + M); RingFactory<C> cfac = f.ring.coFac; C B = PolyUtil.<C>evaluateMain(cfac, fa, M); // works also without this case, only for optimization // to use rational number interval end points // can fail if real root is in interval [r,r+1] // for too low precision or too big r, since r is approximation if ((Object) B instanceof RealAlgebraicNumber) { RealAlgebraicNumber Br = (RealAlgebraicNumber) B; BigRational r = Br.magnitude(); B = cfac.fromInteger(r.numerator()).divide(cfac.fromInteger(r.denominator())); } // System.out.println("B = " + B); return B; }
/** * Univariate GenPolynomial algebraic partial fraction decomposition, via absolute factorization * to linear factors. * * @param A univariate GenPolynomial, deg(A) < deg(P). * @param P univariate squarefree GenPolynomial, gcd(A,P) == 1. * @return partial fraction container. */ public PartialFraction<C> baseAlgebraicPartialFractionIrreducibleAbsolute( GenPolynomial<C> A, GenPolynomial<C> P) { if (P == null || P.isZERO()) { throw new RuntimeException(" P == null or P == 0"); } // System.out.println("\nP_base_algeb_part = " + P); GenPolynomialRing<C> pfac = P.ring; // K[x] if (pfac.nvar > 1) { // System.out.println("facs_base_irred: univ"); throw new RuntimeException("only for univariate polynomials"); } if (!pfac.coFac.isField()) { // System.out.println("facs_base_irred: field"); throw new RuntimeException("only for field coefficients"); } List<C> cfactors = new ArrayList<C>(); List<GenPolynomial<C>> cdenom = new ArrayList<GenPolynomial<C>>(); List<AlgebraicNumber<C>> afactors = new ArrayList<AlgebraicNumber<C>>(); List<GenPolynomial<AlgebraicNumber<C>>> adenom = new ArrayList<GenPolynomial<AlgebraicNumber<C>>>(); // P linear if (P.degree(0) <= 1) { cfactors.add(A.leadingBaseCoefficient()); cdenom.add(P); return new PartialFraction<C>(A, P, cfactors, cdenom, afactors, adenom); } // non linear case Factors<C> afacs = factorsAbsoluteIrreducible(P); // System.out.println("linear algebraic factors = " + afacs); // System.out.println("afactors = " + afacs.afactors); // System.out.println("arfactors = " + afacs.arfactors); // System.out.println("arfactors pol = " + afacs.arfactors.get(0).poly); // System.out.println("arfactors2 = " + afacs.arfactors.get(0).afactors); List<GenPolynomial<AlgebraicNumber<C>>> fact = afacs.getFactors(); // System.out.println("factors = " + fact); GenPolynomial<AlgebraicNumber<C>> Pa = afacs.apoly; GenPolynomial<AlgebraicNumber<C>> Aa = PolyUtil.<C>convertToRecAlgebraicCoefficients(1, Pa.ring, A); GreatestCommonDivisorAbstract<AlgebraicNumber<C>> aengine = GCDFactory.getProxy(afacs.afac); // System.out.println("denom = " + Pa); // System.out.println("numer = " + Aa); List<GenPolynomial<AlgebraicNumber<C>>> numers = aengine.basePartialFraction(Aa, fact); // System.out.println("part frac = " + numers); GenPolynomial<AlgebraicNumber<C>> A0 = numers.remove(0); if (!A0.isZERO()) { throw new RuntimeException(" A0 != 0: deg(A)>= deg(P)"); } int i = 0; for (GenPolynomial<AlgebraicNumber<C>> fa : fact) { GenPolynomial<AlgebraicNumber<C>> an = numers.get(i++); if (fa.degree(0) <= 1) { afactors.add(an.leadingBaseCoefficient()); adenom.add(fa); continue; } System.out.println("fa = " + fa); Factors<AlgebraicNumber<C>> faf = afacs.getFactor(fa); System.out.println("faf = " + faf); List<GenPolynomial<AlgebraicNumber<AlgebraicNumber<C>>>> fafact = faf.getFactors(); GenPolynomial<AlgebraicNumber<AlgebraicNumber<C>>> Aaa = PolyUtil.<AlgebraicNumber<C>>convertToRecAlgebraicCoefficients(1, faf.apoly.ring, an); GreatestCommonDivisorAbstract<AlgebraicNumber<AlgebraicNumber<C>>> aaengine = GCDFactory.getImplementation(faf.afac); List<GenPolynomial<AlgebraicNumber<AlgebraicNumber<C>>>> anumers = aaengine.basePartialFraction(Aaa, fafact); System.out.println("algeb part frac = " + anumers); GenPolynomial<AlgebraicNumber<AlgebraicNumber<C>>> A0a = anumers.remove(0); if (!A0a.isZERO()) { throw new RuntimeException(" A0 != 0: deg(A)>= deg(P)"); } int k = 0; for (GenPolynomial<AlgebraicNumber<AlgebraicNumber<C>>> faa : fafact) { GenPolynomial<AlgebraicNumber<AlgebraicNumber<C>>> ana = anumers.get(k++); System.out.println("faa = " + faa); System.out.println("ana = " + ana); if (faa.degree(0) > 1) { throw new RuntimeException(" faa not linear"); } GenPolynomial<AlgebraicNumber<C>> ana1 = (GenPolynomial<AlgebraicNumber<C>>) (GenPolynomial) ana; GenPolynomial<AlgebraicNumber<C>> faa1 = (GenPolynomial<AlgebraicNumber<C>>) (GenPolynomial) faa; afactors.add(ana1.leadingBaseCoefficient()); adenom.add(faa1); } } return new PartialFraction<C>(A, P, cfactors, cdenom, afactors, adenom); }
/** * Univariate GenPolynomial algebraic partial fraction decomposition, Rothstein-Trager algorithm. * * @param A univariate GenPolynomial, deg(A) < deg(P). * @param P univariate squarefree GenPolynomial, gcd(A,P) == 1. * @return partial fraction container. */ @Deprecated public PartialFraction<C> baseAlgebraicPartialFractionIrreducible( GenPolynomial<C> A, GenPolynomial<C> P) { if (P == null || P.isZERO()) { throw new RuntimeException(" P == null or P == 0"); } // System.out.println("\nP_base_algeb_part = " + P); GenPolynomialRing<C> pfac = P.ring; // K[x] if (pfac.nvar > 1) { // System.out.println("facs_base_irred: univ"); throw new RuntimeException("only for univariate polynomials"); } if (!pfac.coFac.isField()) { // System.out.println("facs_base_irred: field"); throw new RuntimeException("only for field coefficients"); } List<C> cfactors = new ArrayList<C>(); List<GenPolynomial<C>> cdenom = new ArrayList<GenPolynomial<C>>(); List<AlgebraicNumber<C>> afactors = new ArrayList<AlgebraicNumber<C>>(); List<GenPolynomial<AlgebraicNumber<C>>> adenom = new ArrayList<GenPolynomial<AlgebraicNumber<C>>>(); // P linear if (P.degree(0) <= 1) { cfactors.add(A.leadingBaseCoefficient()); cdenom.add(P); return new PartialFraction<C>(A, P, cfactors, cdenom, afactors, adenom); } // deriviative GenPolynomial<C> Pp = PolyUtil.<C>baseDeriviative(P); // no: Pp = Pp.monic(); // System.out.println("\nP = " + P); // System.out.println("Pp = " + Pp); // Q[t] String[] vars = new String[] {"t"}; GenPolynomialRing<C> cfac = new GenPolynomialRing<C>(pfac.coFac, 1, pfac.tord, vars); GenPolynomial<C> t = cfac.univariate(0); // System.out.println("t = " + t); // Q[x][t] GenPolynomialRing<GenPolynomial<C>> rfac = new GenPolynomialRing<GenPolynomial<C>>(pfac, cfac); // sic // System.out.println("rfac = " + rfac.toScript()); // transform polynomials to bi-variate polynomial GenPolynomial<GenPolynomial<C>> Ac = PolyUfdUtil.<C>introduceLowerVariable(rfac, A); // System.out.println("Ac = " + Ac); GenPolynomial<GenPolynomial<C>> Pc = PolyUfdUtil.<C>introduceLowerVariable(rfac, P); // System.out.println("Pc = " + Pc); GenPolynomial<GenPolynomial<C>> Pcp = PolyUfdUtil.<C>introduceLowerVariable(rfac, Pp); // System.out.println("Pcp = " + Pcp); // Q[t][x] GenPolynomialRing<GenPolynomial<C>> rfac1 = Pc.ring; // System.out.println("rfac1 = " + rfac1.toScript()); // A - t P' GenPolynomial<GenPolynomial<C>> tc = rfac1.getONE().multiply(t); // System.out.println("tc = " + tc); GenPolynomial<GenPolynomial<C>> At = Ac.subtract(tc.multiply(Pcp)); // System.out.println("At = " + At); GreatestCommonDivisorSubres<C> engine = new GreatestCommonDivisorSubres<C>(); // = GCDFactory.<C>getImplementation( cfac.coFac ); GreatestCommonDivisorAbstract<AlgebraicNumber<C>> aengine = null; GenPolynomial<GenPolynomial<C>> Rc = engine.recursiveResultant(Pc, At); // System.out.println("Rc = " + Rc); GenPolynomial<C> res = Rc.leadingBaseCoefficient(); // no: res = res.monic(); // System.out.println("\nres = " + res); SortedMap<GenPolynomial<C>, Long> resfac = baseFactors(res); // System.out.println("resfac = " + resfac + "\n"); for (GenPolynomial<C> r : resfac.keySet()) { // System.out.println("\nr(t) = " + r); if (r.isConstant()) { continue; } // if ( r.degree(0) <= 1L ) { // System.out.println("warning linear factor in resultant ignored"); // continue; // //throw new RuntimeException("input not irreducible"); // } // vars = new String[] { "z_" + Math.abs(r.hashCode() % 1000) }; vars = pfac.newVars("z_"); pfac = pfac.clone(); vars = pfac.setVars(vars); r = pfac.copy(r); // hack to exchange the variables // System.out.println("r(z_) = " + r); AlgebraicNumberRing<C> afac = new AlgebraicNumberRing<C>(r, true); // since irreducible logger.debug("afac = " + afac.toScript()); AlgebraicNumber<C> a = afac.getGenerator(); // no: a = a.negate(); // System.out.println("a = " + a); // K(alpha)[x] GenPolynomialRing<AlgebraicNumber<C>> pafac = new GenPolynomialRing<AlgebraicNumber<C>>(afac, Pc.ring); // System.out.println("pafac = " + pafac.toScript()); // convert to K(alpha)[x] GenPolynomial<AlgebraicNumber<C>> Pa = PolyUtil.<C>convertToAlgebraicCoefficients(pafac, P); // System.out.println("Pa = " + Pa); GenPolynomial<AlgebraicNumber<C>> Pap = PolyUtil.<C>convertToAlgebraicCoefficients(pafac, Pp); // System.out.println("Pap = " + Pap); GenPolynomial<AlgebraicNumber<C>> Aa = PolyUtil.<C>convertToAlgebraicCoefficients(pafac, A); // System.out.println("Aa = " + Aa); // A - a P' GenPolynomial<AlgebraicNumber<C>> Ap = Aa.subtract(Pap.multiply(a)); // System.out.println("Ap = " + Ap); if (aengine == null) { aengine = GCDFactory.<AlgebraicNumber<C>>getImplementation(afac); // System.out.println("aengine = " + aengine); } GenPolynomial<AlgebraicNumber<C>> Ga = aengine.baseGcd(Pa, Ap); // System.out.println("Ga = " + Ga); if (Ga.isConstant()) { // System.out.println("warning constant gcd ignored"); continue; } afactors.add(a); adenom.add(Ga); // quadratic case if (P.degree(0) == 2 && Ga.degree(0) == 1) { GenPolynomial<AlgebraicNumber<C>>[] qra = PolyUtil.<AlgebraicNumber<C>>basePseudoQuotientRemainder(Pa, Ga); GenPolynomial<AlgebraicNumber<C>> Qa = qra[0]; if (!qra[1].isZERO()) { throw new RuntimeException("remainder not zero"); } // System.out.println("Qa = " + Qa); afactors.add(a.negate()); adenom.add(Qa); } if (false && P.degree(0) == 3 && Ga.degree(0) == 1) { GenPolynomial<AlgebraicNumber<C>>[] qra = PolyUtil.<AlgebraicNumber<C>>basePseudoQuotientRemainder(Pa, Ga); GenPolynomial<AlgebraicNumber<C>> Qa = qra[0]; if (!qra[1].isZERO()) { throw new RuntimeException("remainder not zero"); } System.out.println("Qa3 = " + Qa); // afactors.add( a.negate() ); // adenom.add( Qa ); } } return new PartialFraction<C>(A, P, cfactors, cdenom, afactors, adenom); }
/** * GenPolynomial polynomial squarefree factorization. * * @param A GenPolynomial. * @return [p_1 -> e_1, ..., p_k -> e_k] with P = prod_{i=1,...,k} p_i^{e_i} and p_i * squarefree. */ @Override public SortedMap<GenPolynomial<C>, Long> baseSquarefreeFactors(GenPolynomial<C> A) { SortedMap<GenPolynomial<C>, Long> sfactors = new TreeMap<GenPolynomial<C>, Long>(); if (A == null || A.isZERO()) { return sfactors; } GenPolynomialRing<C> pfac = A.ring; if (A.isConstant()) { C coeff = A.leadingBaseCoefficient(); // System.out.println("coeff = " + coeff + " @ " + coeff.factory()); SortedMap<C, Long> rfactors = squarefreeFactors(coeff); // System.out.println("rfactors,const = " + rfactors); if (rfactors != null && rfactors.size() > 0) { for (Map.Entry<C, Long> me : rfactors.entrySet()) { C c = me.getKey(); if (!c.isONE()) { GenPolynomial<C> cr = pfac.getONE().multiply(c); Long rk = me.getValue(); // rfactors.get(c); sfactors.put(cr, rk); } } } else { sfactors.put(A, 1L); } return sfactors; } if (pfac.nvar > 1) { throw new IllegalArgumentException( this.getClass().getName() + " only for univariate polynomials"); } C ldbcf = A.leadingBaseCoefficient(); if (!ldbcf.isONE()) { A = A.divide(ldbcf); SortedMap<C, Long> rfactors = squarefreeFactors(ldbcf); // System.out.println("rfactors,ldbcf = " + rfactors); if (rfactors != null && rfactors.size() > 0) { for (Map.Entry<C, Long> me : rfactors.entrySet()) { C c = me.getKey(); if (!c.isONE()) { GenPolynomial<C> cr = pfac.getONE().multiply(c); Long rk = me.getValue(); // rfactors.get(c); sfactors.put(cr, rk); } } } else { GenPolynomial<C> f1 = pfac.getONE().multiply(ldbcf); // System.out.println("gcda sqf f1 = " + f1); sfactors.put(f1, 1L); } ldbcf = pfac.coFac.getONE(); } GenPolynomial<C> T0 = A; long e = 1L; GenPolynomial<C> Tp; GenPolynomial<C> T = null; GenPolynomial<C> V = null; long k = 0L; long mp = 0L; boolean init = true; while (true) { // System.out.println("T0 = " + T0); if (init) { if (T0.isConstant() || T0.isZERO()) { break; } Tp = PolyUtil.<C>baseDeriviative(T0); T = engine.baseGcd(T0, Tp); T = T.monic(); V = PolyUtil.<C>basePseudoDivide(T0, T); // System.out.println("iT0 = " + T0); // System.out.println("iTp = " + Tp); // System.out.println("iT = " + T); // System.out.println("iV = " + V); // System.out.println("const(iV) = " + V.isConstant()); k = 0L; mp = 0L; init = false; } if (V.isConstant()) { mp = pfac.characteristic().longValue(); // assert != 0 // T0 = PolyUtil.<C> baseModRoot(T,mp); T0 = baseRootCharacteristic(T); logger.info("char root: T0 = " + T0 + ", T = " + T); if (T0 == null) { // break; T0 = pfac.getZERO(); } e = e * mp; init = true; continue; } k++; if (mp != 0L && k % mp == 0L) { T = PolyUtil.<C>basePseudoDivide(T, V); System.out.println("k = " + k); // System.out.println("T = " + T); k++; } GenPolynomial<C> W = engine.baseGcd(T, V); W = W.monic(); GenPolynomial<C> z = PolyUtil.<C>basePseudoDivide(V, W); // System.out.println("W = " + W); // System.out.println("z = " + z); V = W; T = PolyUtil.<C>basePseudoDivide(T, V); // System.out.println("V = " + V); // System.out.println("T = " + T); if (z.degree(0) > 0) { if (ldbcf.isONE() && !z.leadingBaseCoefficient().isONE()) { z = z.monic(); logger.info("z,monic = " + z); } sfactors.put(z, (e * k)); } } // look, a stupid error: // if ( !ldbcf.isONE() ) { // GenPolynomial<C> f1 = sfactors.firstKey(); // long e1 = sfactors.remove(f1); // System.out.println("gcda sqf c = " + c); // f1 = f1.multiply(c); // //System.out.println("gcda sqf f1e = " + f1); // sfactors.put(f1,e1); // } logger.info("exit char root: T0 = " + T0 + ", T = " + T); return sfactors; }