private String reportIfDiscrete(Graph dag, DataSet dataSet) { List vars = dataSet.getVariables(); Map<String, DiscreteVariable> nodesToVars = new HashMap<String, DiscreteVariable>(); for (int i = 0; i < dataSet.getNumColumns(); i++) { DiscreteVariable var = (DiscreteVariable) vars.get(i); String name = var.getName(); Node node = new GraphNode(name); nodesToVars.put(node.getName(), var); } BayesPm bayesPm = new BayesPm(new Dag(dag)); List<Node> nodes = bayesPm.getDag().getNodes(); for (Node node : nodes) { Node var = nodesToVars.get(node.getName()); if (var instanceof DiscreteVariable) { DiscreteVariable var2 = nodesToVars.get(node.getName()); int numCategories = var2.getNumCategories(); List<String> categories = new ArrayList<String>(); for (int j = 0; j < numCategories; j++) { categories.add(var2.getCategory(j)); } bayesPm.setCategories(node, categories); } } BayesProperties properties = new BayesProperties(dataSet, dag); properties.setGraph(dag); NumberFormat nf = NumberFormat.getInstance(); nf.setMaximumFractionDigits(4); StringBuilder buf = new StringBuilder(); buf.append("\nP-value = ").append(properties.getLikelihoodRatioP()); buf.append("\nDf = ").append(properties.getPValueDf()); buf.append("\nChi square = ").append(nf.format(properties.getPValueChisq())); buf.append("\nBIC score = ").append(nf.format(properties.getBic())); buf.append("\n\nH0: Completely disconnected graph."); return buf.toString(); }
private String reportIfContinuous(Graph dag, DataSet dataSet) { SemPm semPm = new SemPm(dag); SemEstimator estimator = new SemEstimator(dataSet, semPm); estimator.estimate(); SemIm semIm = estimator.getEstimatedSem(); NumberFormat nf = NumberFormat.getInstance(); nf.setMaximumFractionDigits(4); StringBuilder buf = new StringBuilder(); buf.append("\nDegrees of Freedom = ") .append(semPm.getDof()) .append("Chi-Square = ") .append(nf.format(semIm.getChiSquare())) .append("\nP Value = ") .append(nf.format(semIm.getPValue())) .append("\nBIC Score = ") .append(nf.format(semIm.getBicScore())); buf.append( "\n\nThe above chi square test assumes that the maximum " + "likelihood function over the measured variables has been " + "maximized. Under that assumption, the null hypothesis for " + "the test is that the population covariance matrix over all " + "of the measured variables is equal to the estimated covariance " + "matrix over all of the measured variables written as a function " + "of the free model parameters--that is, the unfixed parameters " + "for each directed edge (the linear coefficient for that edge), " + "each exogenous variable (the variance for the error term for " + "that variable), and each bidirected edge (the covariance for " + "the exogenous variables it connects). The model is explained " + "in Bollen, Structural Equations with Latent Variable, 110. "); return buf.toString(); }