/** * Generates a simple exemplar of this class to test serialization. * * @see edu.cmu.TestSerialization * @see TetradSerializableUtils */ public static PValueImproverWrapper serializableInstance() { return new PValueImproverWrapper( GraphWrapper.serializableInstance(), DataWrapper.serializableInstance(), PcSearchParams.serializableInstance(), KnowledgeBoxModel.serializableInstance()); }
public void execute() { IKnowledge knowledge = getParams().getKnowledge(); PcSearchParams searchParams = (PcSearchParams) getParams(); PcIndTestParams indTestParams = (PcIndTestParams) searchParams.getIndTestParams(); VcpcAlt VcpcAlt = new VcpcAlt(getIndependenceTest()); VcpcAlt.setKnowledge(knowledge); VcpcAlt.setAggressivelyPreventCycles(this.isAggressivelyPreventCycles()); VcpcAlt.setDepth(indTestParams.getDepth()); Graph graph = VcpcAlt.search(); if (getSourceGraph() != null) { GraphUtils.arrangeBySourceGraph(graph, getSourceGraph()); } else if (knowledge.isDefaultToKnowledgeLayout()) { SearchGraphUtils.arrangeByKnowledgeTiers(graph, knowledge); } else { GraphUtils.circleLayout(graph, 200, 200, 150); } setResultGraph(graph); }
/** * Generates a simple exemplar of this class to test serialization. * * @see edu.cmu.TestSerialization * @see TetradSerializableUtils */ public static VcpcAltRunner serializableInstance() { return new VcpcAltRunner(Dag.serializableInstance(), PcSearchParams.serializableInstance()); }
/** * Executes the algorithm, producing (at least) a result workbench. Must be implemented in the * extending class. */ public void execute() { Object source = dataWrapper.getSelectedDataModel(); DataModel dataModel = (DataModel) source; IKnowledge knowledge = params2.getKnowledge(); if (initialGraph == null) { initialGraph = new EdgeListGraph(dataModel.getVariables()); } Graph graph2 = new EdgeListGraph(initialGraph); graph2 = GraphUtils.replaceNodes(graph2, dataModel.getVariables()); Bff search; if (dataModel instanceof DataSet) { DataSet dataSet = (DataSet) dataModel; if (getAlgorithmType() == AlgorithmType.BEAM) { search = new BffBeam(graph2, dataSet, knowledge); } else if (getAlgorithmType() == AlgorithmType.GES) { search = new BffGes(graph2, dataSet); search.setKnowledge(knowledge); } else { throw new IllegalStateException(); } } else if (dataModel instanceof CovarianceMatrix) { CovarianceMatrix covarianceMatrix = (CovarianceMatrix) dataModel; if (getAlgorithmType() == AlgorithmType.BEAM) { search = new BffBeam(graph2, covarianceMatrix, knowledge); } else if (getAlgorithmType() == AlgorithmType.GES) { throw new IllegalArgumentException( "GES method requires a dataset; a covariance matrix was provided."); // search = new BffGes(graph2, covarianceMatrix); // search.setKnowledge(knowledge); } else { throw new IllegalStateException(); } } else { throw new IllegalStateException(); } PcIndTestParams indTestParams = (PcIndTestParams) getParams().getIndTestParams(); search.setAlpha(indTestParams.getAlpha()); search.setBeamWidth(indTestParams.getBeamWidth()); search.setHighPValueAlpha(indTestParams.getZeroEdgeP()); this.graph = search.search(); // this.graph = search.getNewSemIm().getSemPm().getGraph(); setOriginalSemIm(search.getOriginalSemIm()); this.newSemIm = search.getNewSemIm(); fireGraphChange(graph); if (getSourceGraph() != null) { GraphUtils.arrangeBySourceGraph(graph, getSourceGraph()); } else if (knowledge.isDefaultToKnowledgeLayout()) { SearchGraphUtils.arrangeByKnowledgeTiers(graph, knowledge); } else { GraphUtils.circleLayout(graph, 200, 200, 150); } setResultGraph(SearchGraphUtils.patternForDag(graph, knowledge)); }