/** * @return Returns the error covariance matrix of the model. i.e. [a][b] is the covariance of E_a * and E_b, with [a][a] of course being the variance of E_a. THESE ARE NOT PARAMETERS OF THE * MODEL; THEY ARE CALCULATED. Note that elements of this matrix may be Double.NaN; this * indicates that these elements cannot be calculated. */ private TetradMatrix errCovar(Map<Node, Double> errorVariances) { List<Node> variableNodes = getVariableNodes(); List<Node> errorNodes = new ArrayList<Node>(); for (Node node : variableNodes) { errorNodes.add(semGraph.getExogenous(node)); } TetradMatrix errorCovar = new TetradMatrix(errorVariances.size(), errorVariances.size()); for (int index = 0; index < errorNodes.size(); index++) { Node error = errorNodes.get(index); double variance = getErrorVariance(error); errorCovar.set(index, index, variance); } for (int index1 = 0; index1 < errorNodes.size(); index1++) { for (int index2 = 0; index2 < errorNodes.size(); index2++) { Node error1 = errorNodes.get(index1); Node error2 = errorNodes.get(index2); Edge edge = semGraph.getEdge(error1, error2); if (edge != null && Edges.isBidirectedEdge(edge)) { double covariance = getErrorCovariance(error1, error2); errorCovar.set(index1, index2, covariance); } } } return errorCovar; }
//////////////////////////////////////////////// // collect in rTupleList all unshielded tuples //////////////////////////////////////////////// private List<Node[]> getRTuples() { List<Node[]> rTuples = new ArrayList<Node[]>(); List<Node> nodes = graph.getNodes(); for (Node j : nodes) { List<Node> adjacentNodes = graph.getAdjacentNodes(j); if (adjacentNodes.size() < 2) { continue; } ChoiceGenerator cg = new ChoiceGenerator(adjacentNodes.size(), 2); int[] combination; while ((combination = cg.next()) != null) { Node i = adjacentNodes.get(combination[0]); Node k = adjacentNodes.get(combination[1]); // Skip triples that are shielded. if (!graph.isAdjacentTo(i, k)) { Node[] newTuple = {i, j, k}; rTuples.add(newTuple); } } } return (rTuples); }
public List<Triple> getUnshieldedCollidersFromGraph(Graph graph) { List<Triple> colliders = new ArrayList<>(); List<Node> nodes = graph.getNodes(); for (Node b : nodes) { List<Node> adjacentNodes = graph.getAdjacentNodes(b); if (adjacentNodes.size() < 2) { continue; } ChoiceGenerator cg = new ChoiceGenerator(adjacentNodes.size(), 2); int[] combination; while ((combination = cg.next()) != null) { Node a = adjacentNodes.get(combination[0]); Node c = adjacentNodes.get(combination[1]); // Skip triples that are shielded. if (graph.isAdjacentTo(a, c)) { continue; } if (graph.isDefCollider(a, b, c)) { colliders.add(new Triple(a, b, c)); } } } return colliders; }
private void calculateArrowsForward(Node x, Node y, Graph graph) { clearArrow(x, y); if (!knowledgeEmpty()) { if (getKnowledge().isForbidden(x.getName(), y.getName())) { return; } } List<Node> naYX = getNaYX(x, y, graph); List<Node> t = getTNeighbors(x, y, graph); DepthChoiceGenerator gen = new DepthChoiceGenerator(t.size(), t.size()); int[] choice; while ((choice = gen.next()) != null) { List<Node> s = GraphUtils.asList(choice, t); if (!knowledgeEmpty()) { if (!validSetByKnowledge(y, s)) { continue; } } double bump = insertEval(x, y, s, naYX, graph); if (bump > 0.0) { Arrow arrow = new Arrow(bump, x, y, s, naYX); sortedArrows.add(arrow); addLookupArrow(x, y, arrow); } } }
/** * Step C of PC; orients colliders using specified sepset. That is, orients x *-* y *-* z as x *-> * y <-* z just in case y is in Sepset({x, z}). */ public Map<Triple, Double> findCollidersUsingSepsets( SepsetProducer sepsetProducer, Graph graph, boolean verbose, IKnowledge knowledge) { TetradLogger.getInstance().log("details", "Starting Collider Orientation:"); Map<Triple, Double> colliders = new HashMap<>(); System.out.println("Looking for colliders"); List<Node> nodes = graph.getNodes(); for (Node b : nodes) { List<Node> adjacentNodes = graph.getAdjacentNodes(b); if (adjacentNodes.size() < 2) { continue; } ChoiceGenerator cg = new ChoiceGenerator(adjacentNodes.size(), 2); int[] combination; while ((combination = cg.next()) != null) { Node a = adjacentNodes.get(combination[0]); Node c = adjacentNodes.get(combination[1]); // Skip triples that are shielded. if (graph.isAdjacentTo(a, c)) { continue; } List<Node> sepset = sepsetProducer.getSepset(a, c); if (sepset == null) continue; // if (sepsetProducer.getPValue() < 0.5) continue; if (!sepset.contains(b)) { if (verbose) { // boolean dsep = this.dsep.isIndependent(a, c); // System.out.println("QQQ p = " + independenceTest.getPValue() + // " " + dsep); System.out.println( "\nCollider orientation <" + a + ", " + b + ", " + c + "> sepset = " + sepset); } colliders.put(new Triple(a, b, c), sepsetProducer.getPValue()); TetradLogger.getInstance() .log("colliderOrientations", SearchLogUtils.colliderOrientedMsg(a, b, c, sepset)); } } } TetradLogger.getInstance().log("details", "Finishing Collider Orientation."); System.out.println("Done finding colliders"); return colliders; }
private double pValue(Node node, List<Node> parents) { List<Double> _residuals = new ArrayList<Double>(); Node _target = node; List<Node> _regressors = parents; Node target = getVariable(variables, _target.getName()); List<Node> regressors = new ArrayList<Node>(); for (Node _regressor : _regressors) { Node variable = getVariable(variables, _regressor.getName()); regressors.add(variable); } DATASET: for (int m = 0; m < dataSets.size(); m++) { RegressionResult result = regressions.get(m).regress(target, regressors); TetradVector residualsSingleDataset = result.getResiduals(); for (int h = 0; h < residualsSingleDataset.size(); h++) { if (Double.isNaN(residualsSingleDataset.get(h))) { continue DATASET; } } DoubleArrayList _residualsSingleDataset = new DoubleArrayList(residualsSingleDataset.toArray()); double mean = Descriptive.mean(_residualsSingleDataset); double std = Descriptive.standardDeviation( Descriptive.variance( _residualsSingleDataset.size(), Descriptive.sum(_residualsSingleDataset), Descriptive.sumOfSquares(_residualsSingleDataset))); for (int i2 = 0; i2 < _residualsSingleDataset.size(); i2++) { // _residualsSingleDataset.set(i2, (_residualsSingleDataset.get(i2) - mean) / // std); if (isMeanCenterResiduals()) { _residualsSingleDataset.set(i2, (_residualsSingleDataset.get(i2) - mean)); } // _residualsSingleDataset.set(i2, (_residualsSingleDataset.get(i2))); } for (int k = 0; k < _residualsSingleDataset.size(); k++) { _residuals.add(_residualsSingleDataset.get(k)); } } double[] _f = new double[_residuals.size()]; for (int k = 0; k < _residuals.size(); k++) { _f[k] = _residuals.get(k); } return new AndersonDarlingTest(_f).getP(); }
public static boolean meekR1Locally2( Graph graph, Knowledge knowledge, IndependenceTest test, int depth) { List<Node> nodes = graph.getNodes(); boolean changed = true; while (changed) { changed = false; for (Node a : nodes) { List<Node> adjacentNodes = graph.getAdjacentNodes(a); if (adjacentNodes.size() < 2) { continue; } ChoiceGenerator cg = new ChoiceGenerator(adjacentNodes.size(), 2); int[] combination; while ((combination = cg.next()) != null) { Node b = adjacentNodes.get(combination[0]); Node c = adjacentNodes.get(combination[1]); // Skip triples that are shielded. if (graph.isAdjacentTo(b, c)) { continue; } if (graph.getEndpoint(b, a) == Endpoint.ARROW && graph.isUndirectedFromTo(a, c)) { if (existsLocalSepsetWithoutDet(b, a, c, test, graph, depth)) { continue; } if (isArrowpointAllowed(a, c, knowledge)) { graph.setEndpoint(a, c, Endpoint.ARROW); TetradLogger.getInstance() .edgeOriented(SearchLogUtils.edgeOrientedMsg("Meek R1", graph.getEdge(a, c))); changed = true; } } else if (graph.getEndpoint(c, a) == Endpoint.ARROW && graph.isUndirectedFromTo(a, b)) { if (existsLocalSepsetWithoutDet(b, a, c, test, graph, depth)) { continue; } if (isArrowpointAllowed(a, b, knowledge)) { graph.setEndpoint(a, b, Endpoint.ARROW); TetradLogger.getInstance() .edgeOriented(SearchLogUtils.edgeOrientedMsg("Meek R1", graph.getEdge(a, b))); changed = true; } } } } } return changed; }
/** * Performs step C of the algorithm, as indicated on page xxx of CPS, with the modification that * X--W--Y is oriented as X-->W<--Y if W is *determined by* the sepset of (X, Y), rather than W * just being *in* the sepset of (X, Y). */ public static void pcdOrientC( SepsetMap set, IndependenceTest test, Knowledge knowledge, Graph graph) { TetradLogger.getInstance().log("info", "Staring Collider Orientation:"); List<Node> nodes = graph.getNodes(); for (Node y : nodes) { List<Node> adjacentNodes = graph.getAdjacentNodes(y); if (adjacentNodes.size() < 2) { continue; } ChoiceGenerator cg = new ChoiceGenerator(adjacentNodes.size(), 2); int[] combination; while ((combination = cg.next()) != null) { Node x = adjacentNodes.get(combination[0]); Node z = adjacentNodes.get(combination[1]); // Skip triples that are shielded. if (graph.isAdjacentTo(x, z)) { continue; } List<Node> sepset = set.get(x, z); if (sepset == null) { continue; } List<Node> augmentedSet = new LinkedList<Node>(sepset); augmentedSet.add(y); if (test.determines(sepset, y)) { continue; } // if (!test.splitDetermines(sepset, x, z) && test.splitDetermines(augmentedSet, x, z)) { continue; } if (!isArrowpointAllowed(x, y, knowledge) || !isArrowpointAllowed(z, y, knowledge)) { continue; } graph.setEndpoint(x, y, Endpoint.ARROW); graph.setEndpoint(z, y, Endpoint.ARROW); TetradLogger.getInstance() .log("colliderOriented", SearchLogUtils.colliderOrientedMsg(x, y, z)); } } TetradLogger.getInstance().log("info", "Finishing Collider Orientation."); }
/** Meek's rule R3. If a--b, a--c, a--d, c-->b, c-->b, then orient a-->b. */ public static boolean meekR3(Graph graph, Knowledge knowledge) { List<Node> nodes = graph.getNodes(); boolean changed = false; for (Node a : nodes) { List<Node> adjacentNodes = graph.getAdjacentNodes(a); if (adjacentNodes.size() < 3) { continue; } for (Node b : adjacentNodes) { List<Node> otherAdjacents = new LinkedList<Node>(adjacentNodes); otherAdjacents.remove(b); if (!graph.isUndirectedFromTo(a, b)) { continue; } ChoiceGenerator cg = new ChoiceGenerator(otherAdjacents.size(), 2); int[] combination; while ((combination = cg.next()) != null) { Node c = otherAdjacents.get(combination[0]); Node d = otherAdjacents.get(combination[1]); if (graph.isAdjacentTo(c, d)) { continue; } if (!graph.isUndirectedFromTo(a, c)) { continue; } if (!graph.isUndirectedFromTo(a, d)) { continue; } if (graph.isDirectedFromTo(c, b) && graph.isDirectedFromTo(d, b)) { if (isArrowpointAllowed(a, b, knowledge)) { graph.setEndpoint(a, b, Endpoint.ARROW); TetradLogger.getInstance() .edgeOriented(SearchLogUtils.edgeOrientedMsg("Meek R3", graph.getEdge(a, b))); changed = true; break; } } } } } return changed; }
/** Returns true iif the given set forms a clique in the given graph. */ private static boolean isClique(List<Node> nodes, Graph graph) { for (int i = 0; i < nodes.size() - 1; i++) { for (int j = i + 1; j < nodes.size(); j++) { if (!graph.isAdjacentTo(nodes.get(i), nodes.get(j))) { return false; } } } return true; }
private void ruleR1(Graph skeleton, Graph graph, List<Node> nodes) { for (Node node : nodes) { SortedMap<Double, String> scoreReports = new TreeMap<Double, String>(); List<Node> adj = skeleton.getAdjacentNodes(node); DepthChoiceGenerator gen = new DepthChoiceGenerator(adj.size(), adj.size()); int[] choice; double maxScore = Double.NEGATIVE_INFINITY; List<Node> parents = null; while ((choice = gen.next()) != null) { List<Node> _parents = GraphUtils.asList(choice, adj); double score = score(node, _parents); scoreReports.put(-score, _parents.toString()); if (score > maxScore) { maxScore = score; parents = _parents; } } for (double score : scoreReports.keySet()) { TetradLogger.getInstance() .log( "score", "For " + node + " parents = " + scoreReports.get(score) + " score = " + -score); } TetradLogger.getInstance().log("score", ""); if (parents == null) { continue; } if (normal(node, parents)) continue; for (Node _node : adj) { if (parents.contains(_node)) { Edge parentEdge = Edges.directedEdge(_node, node); if (!graph.containsEdge(parentEdge)) { graph.addEdge(parentEdge); } } } } }
private static double characteristicPathLength(Graph g) { List<Node> nodes = g.getNodes(); int total = 0; int count = 0; for (int i = 0; i < nodes.size(); i++) { for (int j = i; j < nodes.size(); j++) { int shortest = shortestPath(nodes.get(i), nodes.get(j), g); total += shortest; count++; } } return total / (double) count; }
/** * Sets the expression which should be evaluated when calculating new values for the given * parameter. These values are used to initialize the freeParameters. * * @param parameter The parameter whose initial value needs to be computed. * @param expressionString The formula for picking initial values. * @throws ParseException If the formula cannot be parsed or contains variable names. */ public void setParameterEstimationInitializationExpression( String startsWith, String parameter, String expressionString) throws ParseException { if (parameter == null) { throw new NullPointerException("Parameter was null."); } if (startsWith == null) { throw new NullPointerException("StartsWith expression was null."); } if (startsWith.contains(" ")) { throw new IllegalArgumentException("StartsWith expression contains spaces."); } if (expressionString == null) { throw new NullPointerException("Expression string was null."); } // Parse the expression. This could throw an ParseException, but that exception needs to handed // up the // chain, because the interface will need it. ExpressionParser parser = new ExpressionParser(); Expression expression = parser.parseExpression(expressionString); List<String> parameterNames = parser.getParameters(); if (parameterNames.size() > 0) { throw new IllegalArgumentException( "Initial distribution may not " + "contain parameters: " + expressionString); } parameterEstimationInitializationExpressions.put(parameter, expression); parameterEstimationInitializationExpressionStrings.put(parameter, expressionString); startsWithParametersTemplates.put(startsWith, expressionString); }
// Quartets first , then triples. private Set<Set<Integer>> estimateClustersSAG() { Map<Node, Set<Node>> adjacencies; if (depth == -2) { adjacencies = new HashMap<Node, Set<Node>>(); for (Node node : variables) { HashSet<Node> _nodes = new HashSet<Node>(variables); _nodes.remove(node); adjacencies.put(node, _nodes); } } else { System.out.println("Running PC adjacency search..."); Graph graph = new EdgeListGraph(variables); Fas fas = new Fas(graph, indTest); fas.setDepth(depth); // 1? adjacencies = fas.searchMapOnly(); System.out.println("...done."); } List<Integer> _variables = new ArrayList<Integer>(); for (int i = 0; i < variables.size(); i++) _variables.add(i); Set<Set<Integer>> pureClusters = findPureClusters(_variables, adjacencies); for (Set<Integer> cluster : pureClusters) _variables.removeAll(cluster); Set<Set<Integer>> mixedClusters = findMixedClusters(_variables, unionPure(pureClusters), adjacencies); Set<Set<Integer>> allClusters = new HashSet<Set<Integer>>(pureClusters); allClusters.addAll(mixedClusters); return allClusters; }
private String clusterSizes(List<List<Node>> partition, List<List<Node>> trueClusters) { String s = ""; FOR: for (int i = 0; i < partition.size(); i++) { List<Node> cluster = partition.get(i); s += cluster.size(); for (List<Node> trueCluster : trueClusters) { if (trueCluster.containsAll(cluster)) { // Collections.sort(trueCluster); // Collections.sort(cluster); // System.out.println(trueCluster + " " + cluster); s += "p"; if (i < partition.size() - 1) { s += ","; } continue FOR; } } if (i < partition.size() - 1) { s += ","; } } return s; }
/** * Transforms a maximally directed pattern (PDAG) represented in graph <code>g</code> into an * arbitrary DAG by modifying <code>g</code> itself. Based on the algorithm described in * Chickering (2002) "Optimal structure identification with greedy search" Journal of Machine * Learning Research. R. Silva, June 2004 */ public static void pdagToDag(Graph g) { Graph p = new EdgeListGraph(g); List<Edge> undirectedEdges = new ArrayList<Edge>(); for (Edge edge : g.getEdges()) { if (edge.getEndpoint1() == Endpoint.TAIL && edge.getEndpoint2() == Endpoint.TAIL && !undirectedEdges.contains(edge)) { undirectedEdges.add(edge); } } g.removeEdges(undirectedEdges); List<Node> pNodes = p.getNodes(); do { Node x = null; for (Node pNode : pNodes) { x = pNode; if (p.getChildren(x).size() > 0) { continue; } Set<Node> neighbors = new HashSet<Node>(); for (Edge edge : p.getEdges()) { if (edge.getNode1() == x || edge.getNode2() == x) { if (edge.getEndpoint1() == Endpoint.TAIL && edge.getEndpoint2() == Endpoint.TAIL) { if (edge.getNode1() == x) { neighbors.add(edge.getNode2()); } else { neighbors.add(edge.getNode1()); } } } } if (neighbors.size() > 0) { Collection<Node> parents = p.getParents(x); Set<Node> all = new HashSet<Node>(neighbors); all.addAll(parents); if (!GraphUtils.isClique(all, p)) { continue; } } for (Node neighbor : neighbors) { Node node1 = g.getNode(neighbor.getName()); Node node2 = g.getNode(x.getName()); g.addDirectedEdge(node1, node2); } p.removeNode(x); break; } pNodes.remove(x); } while (pNodes.size() > 0); }
private boolean isUndirected(Graph graph, Node x, Node y) { List<Edge> edges = graph.getEdges(x, y); if (edges.size() == 1) { Edge edge = graph.getEdge(x, y); return Edges.isUndirectedEdge(edge); } return false; }
private int numClustered(List<List<Node>> partition) { int sum = 0; for (int i = 0; i < partition.size(); i++) { List<Node> cluster = partition.get(i); sum += cluster.size(); } return sum; }
public static boolean existsLocalSepsetWithoutDet( Node x, Node y, Node z, IndependenceTest test, Graph graph, int depth) { Set<Node> __nodes = new HashSet<Node>(graph.getAdjacentNodes(x)); __nodes.addAll(graph.getAdjacentNodes(z)); __nodes.remove(x); __nodes.remove(z); List<Node> _nodes = new LinkedList<Node>(__nodes); TetradLogger.getInstance() .log("adjacencies", "Adjacents for " + x + "--" + y + "--" + z + " = " + _nodes); int _depth = depth; if (_depth == -1) { _depth = 1000; } _depth = Math.min(_depth, _nodes.size()); for (int d = 0; d <= _depth; d++) { if (_nodes.size() >= d) { ChoiceGenerator cg2 = new ChoiceGenerator(_nodes.size(), d); int[] choice; while ((choice = cg2.next()) != null) { List<Node> condSet = asList(choice, _nodes); if (condSet.contains(y)) { continue; } if (test.determines(condSet, y)) { continue; } // LogUtils.getInstance().finest("Trying " + condSet); if (test.isIndependent(x, z, condSet)) { return true; } } } } return false; }
private double getPMulticluster(List<List<Integer>> clusters, int numRestarts) { if (false) { Graph g = new EdgeListGraph(); List<Node> latents = new ArrayList<Node>(); for (int i = 0; i < clusters.size(); i++) { GraphNode latent = new GraphNode("L" + i); latent.setNodeType(NodeType.LATENT); latents.add(latent); g.addNode(latent); List<Node> cluster = variablesForIndices(clusters.get(i)); for (int j = 0; j < cluster.size(); j++) { g.addNode(cluster.get(j)); g.addDirectedEdge(latent, cluster.get(j)); } } SemPm pm = new SemPm(g); // pm.fixOneLoadingPerLatent(); SemOptimizerPowell semOptimizer = new SemOptimizerPowell(); semOptimizer.setNumRestarts(numRestarts); SemEstimator est = new SemEstimator(cov, pm, semOptimizer); est.setScoreType(SemIm.ScoreType.Fgls); est.estimate(); return est.getEstimatedSem().getPValue(); } else { double max = Double.NEGATIVE_INFINITY; for (int i = 0; i < numRestarts; i++) { Mimbuild2 mimbuild = new Mimbuild2(); List<List<Node>> _clusters = new ArrayList<List<Node>>(); for (List<Integer> _cluster : clusters) { _clusters.add(variablesForIndices(_cluster)); } List<String> names = new ArrayList<String>(); for (int j = 0; j < clusters.size(); j++) { names.add("L" + j); } mimbuild.search(_clusters, names, cov); double c = mimbuild.getpValue(); if (c > max) max = c; } return max; } }
/** Tests to see if d separation facts are symmetric. */ public void testDSeparation2() { EdgeListGraphSingleConnections graph = new EdgeListGraphSingleConnections( new Dag(GraphUtils.randomGraph(7, 0, 14, 30, 15, 15, true))); List<Node> nodes = graph.getNodes(); int depth = -1; for (int i = 0; i < nodes.size(); i++) { for (int j = i; j < nodes.size(); j++) { Node x = nodes.get(i); Node y = nodes.get(j); List<Node> theRest = new ArrayList<Node>(nodes); // theRest.remove(x); // theRest.remove(y); DepthChoiceGenerator gen = new DepthChoiceGenerator(theRest.size(), depth); int[] choice; while ((choice = gen.next()) != null) { List<Node> z = new LinkedList<Node>(); for (int k = 0; k < choice.length; k++) { z.add(theRest.get(choice[k])); } boolean dConnectedTo = graph.isDConnectedTo(x, y, z); boolean dConnectedTo1 = graph.isDConnectedTo(y, x, z); if (dConnectedTo != dConnectedTo1) { System.out.println(x + " d connected to " + y + " given " + z); System.out.println(graph); System.out.println("dconnectedto = " + dConnectedTo); System.out.println("dconnecteto1 = " + dConnectedTo1); fail(); } } } } }
/** * Step C of PC; orients colliders using specified sepset. That is, orients x *-* y *-* z as x *-> * y <-* z just in case y is in Sepset({x, z}). */ public static void orientCollidersUsingSepsets(SepsetMap set, Knowledge knowledge, Graph graph) { TetradLogger.getInstance().log("info", "Starting Collider Orientation:"); // verifySepsetIntegrity(set, graph); List<Node> nodes = graph.getNodes(); for (Node a : nodes) { List<Node> adjacentNodes = graph.getAdjacentNodes(a); if (adjacentNodes.size() < 2) { continue; } ChoiceGenerator cg = new ChoiceGenerator(adjacentNodes.size(), 2); int[] combination; while ((combination = cg.next()) != null) { Node b = adjacentNodes.get(combination[0]); Node c = adjacentNodes.get(combination[1]); // Skip triples that are shielded. if (graph.isAdjacentTo(b, c)) { continue; } List<Node> sepset = set.get(b, c); if (sepset != null && !sepset.contains(a) && isArrowpointAllowed(b, a, knowledge) && isArrowpointAllowed(c, a, knowledge)) { graph.setEndpoint(b, a, Endpoint.ARROW); graph.setEndpoint(c, a, Endpoint.ARROW); TetradLogger.getInstance() .log("colliderOriented", SearchLogUtils.colliderOrientedMsg(b, a, c, sepset)); } } } TetradLogger.getInstance().log("info", "Finishing Collider Orientation."); }
// Invalid if then nodes or graph changes. private void calculateArrowsBackward(Node x, Node y, Graph graph) { if (x == y) { return; } if (!graph.isAdjacentTo(x, y)) { return; } if (!knowledgeEmpty()) { if (!getKnowledge().noEdgeRequired(x.getName(), y.getName())) { return; } } List<Node> naYX = getNaYX(x, y, graph); clearArrow(x, y); List<Node> _naYX = new ArrayList<Node>(naYX); DepthChoiceGenerator gen = new DepthChoiceGenerator(_naYX.size(), _naYX.size()); int[] choice; while ((choice = gen.next()) != null) { List<Node> H = GraphUtils.asList(choice, _naYX); if (!knowledgeEmpty()) { if (!validSetByKnowledge(y, H)) { continue; } } double bump = deleteEval(x, y, H, naYX, graph); if (bump > 0.0) { Arrow arrow = new Arrow(bump, x, y, H, naYX); sortedArrows.add(arrow); addLookupArrow(x, y, arrow); } } }
private double getP(List<Integer> o) { if (o.size() == 3) return 0; double max = Double.NEGATIVE_INFINITY; for (int i = 0; i < 1; i++) { double c = getP(new ArrayList<Integer>(o), 3); if (c > max) max = c; } return max; }
/** If */ public static boolean meekR2(Graph graph, Knowledge knowledge) { List<Node> nodes = graph.getNodes(); boolean changed = false; for (Node a : nodes) { List<Node> adjacentNodes = graph.getAdjacentNodes(a); if (adjacentNodes.size() < 2) { continue; } ChoiceGenerator cg = new ChoiceGenerator(adjacentNodes.size(), 2); int[] combination; while ((combination = cg.next()) != null) { Node b = adjacentNodes.get(combination[0]); Node c = adjacentNodes.get(combination[1]); if (graph.isDirectedFromTo(b, a) && graph.isDirectedFromTo(a, c) && graph.isUndirectedFromTo(b, c)) { if (isArrowpointAllowed(b, c, knowledge)) { graph.setEndpoint(b, c, Endpoint.ARROW); TetradLogger.getInstance() .edgeOriented(SearchLogUtils.edgeOrientedMsg("Meek R2", graph.getEdge(b, c))); } } else if (graph.isDirectedFromTo(c, a) && graph.isDirectedFromTo(a, b) && graph.isUndirectedFromTo(c, b)) { if (isArrowpointAllowed(c, b, knowledge)) { graph.setEndpoint(c, b, Endpoint.ARROW); TetradLogger.getInstance() .edgeOriented(SearchLogUtils.edgeOrientedMsg("Meek R2", graph.getEdge(c, b))); } } } } return changed; }
public static void orientCollidersLocally( Knowledge knowledge, Graph graph, IndependenceTest test, int depth, Set<Node> nodesToVisit) { TetradLogger.getInstance().log("info", "Starting Collider Orientation:"); if (nodesToVisit == null) { nodesToVisit = new HashSet<Node>(graph.getNodes()); } for (Node a : nodesToVisit) { List<Node> adjacentNodes = graph.getAdjacentNodes(a); if (adjacentNodes.size() < 2) { continue; } ChoiceGenerator cg = new ChoiceGenerator(adjacentNodes.size(), 2); int[] combination; while ((combination = cg.next()) != null) { Node b = adjacentNodes.get(combination[0]); Node c = adjacentNodes.get(combination[1]); // Skip triples that are shielded. if (graph.isAdjacentTo(b, c)) { continue; } if (isArrowpointAllowed1(b, a, knowledge) && isArrowpointAllowed1(c, a, knowledge)) { if (!existsLocalSepsetWith(b, a, c, test, graph, depth)) { graph.setEndpoint(b, a, Endpoint.ARROW); graph.setEndpoint(c, a, Endpoint.ARROW); TetradLogger.getInstance() .log("colliderOriented", SearchLogUtils.colliderOrientedMsg(b, a, c)); } } } } TetradLogger.getInstance().log("info", "Finishing Collider Orientation."); }
/** Tests to see if d separation facts are symmetric. */ public void testDSeparation() { EdgeListGraphSingleConnections graph = new EdgeListGraphSingleConnections( new Dag(GraphUtils.randomGraph(7, 0, 7, 30, 15, 15, true))); System.out.println(graph); List<Node> nodes = graph.getNodes(); int depth = -1; for (int i = 0; i < nodes.size(); i++) { for (int j = i + 1; j < nodes.size(); j++) { Node x = nodes.get(i); Node y = nodes.get(j); List<Node> theRest = new ArrayList<Node>(nodes); theRest.remove(x); theRest.remove(y); DepthChoiceGenerator gen = new DepthChoiceGenerator(theRest.size(), depth); int[] choice; while ((choice = gen.next()) != null) { List<Node> z = new LinkedList<Node>(); for (int k = 0; k < choice.length; k++) { z.add(theRest.get(choice[k])); } if (graph.isDSeparatedFrom(x, y, z) != graph.isDSeparatedFrom(y, x, z)) { fail( SearchLogUtils.independenceFact(x, y, z) + " should have same d-sep result as " + SearchLogUtils.independenceFact(y, x, z)); } } } } }
/** * @return The edge coefficient matrix of the model, a la SemIm. Note that this will normally need * to be transposed, since [a][b] is the edge coefficient for a-->b, not b-->a. Sorry. * History. THESE ARE PARAMETERS OF THE MODEL--THE ONLY PARAMETERS. */ public TetradMatrix edgeCoef() { List<Node> variableNodes = getVariableNodes(); TetradMatrix edgeCoef = new TetradMatrix(variableNodes.size(), variableNodes.size()); for (Edge edge : edgeParameters.keySet()) { if (Edges.isBidirectedEdge(edge)) { continue; } Node a = edge.getNode1(); Node b = edge.getNode2(); int aindex = variableNodes.indexOf(a); int bindex = variableNodes.indexOf(b); double coef = edgeParameters.get(edge); edgeCoef.set(aindex, bindex, coef); } return edgeCoef; }
public static void arrangeByKnowledgeTiers(Graph graph, Knowledge knowledge) { if (knowledge.getNumTiers() == 0) { throw new IllegalArgumentException("There are no Tiers to arrange."); } List<Node> nodes = graph.getNodes(); List<String> varNames = new ArrayList<String>(); int ySpace = 500 / knowledge.getNumTiers(); ySpace = ySpace < 50 ? 50 : ySpace; for (Node node1 : nodes) { varNames.add(node1.getName()); } List<String> notInTier = knowledge.getVarsNotInTier(varNames); int x = 0; int y = 50 - ySpace; if (notInTier.size() > 0) { y += ySpace; for (String name : notInTier) { x += 90; Node node = graph.getNode(name); if (node != null) { node.setCenterX(x); node.setCenterY(y); } } } for (int i = 0; i < knowledge.getNumTiers(); i++) { List<String> tier = knowledge.getTier(i); y += ySpace; x = -25; for (String name : tier) { x += 90; Node node = graph.getNode(name); if (node != null) { node.setCenterX(x); node.setCenterY(y); } } } }
public static List<Set<Node>> powerSet(List<Node> nodes) { List<Set<Node>> subsets = new ArrayList<Set<Node>>(); int total = (int) Math.pow(2, nodes.size()); for (int i = 0; i < total; i++) { Set<Node> newSet = new HashSet<Node>(); String selection = Integer.toBinaryString(i); for (int j = selection.length() - 1; j >= 0; j--) { if (selection.charAt(j) == '1') { newSet.add(nodes.get(selection.length() - j - 1)); } } subsets.add(newSet); } return subsets; }