@Override public void save(final int t, final AugmentedPredictionErrors pe) { DataBlock U = pe.getTransformedPredictionErrors(); Matrix L = pe.getCholeskyFactor(); DataBlock D = L.diagonal(); Matrix E = pe.E(); int nvars = E.getColumnsCount(); n += nvars; LogSign sld = D.sumLog(); det += sld.value; Q.subMatrix(0, nd, nd + 1, nd + 1 + nvars).copy(E.subMatrix()); Q.row(nd).range(nd + 1, nd + 1 + nvars).copy(U); ec.tstoolkit.maths.matrices.ElementaryTransformations.fastGivensTriangularize(Q.subMatrix()); }
@Override public boolean collapse(AugmentedState state) { if (state.getInfo() != StateInfo.Forecast) { return false; } if (!isPositive(Q.diagonal().drop(0, 1))) { return false; } // update the state vector Matrix A = new Matrix(state.B()); int d = A.getColumnsCount(); Matrix S = new Matrix(a()); LowerTriangularMatrix.rsolve(S, A.subMatrix().transpose()); DataBlock D = b().deepClone(); LowerTriangularMatrix.lsolve(S, D); for (int i = 0; i < d; ++i) { DataBlock col = A.column(i); state.a().addAY(-Q.get(d, i), col); state.P().addXaXt(1, col); } state.dropAllConstraints(); return true; }
private SubMatrix a() { return Q.subMatrix(0, nd, 0, nd); }
// time-varying trading days // @Test public void demoTD() { TsData s = Data.X; CompositeResults rslts = TramoSeatsProcessingFactory.process(s, TramoSeatsSpecification.RSA5); PreprocessingModel regarima = rslts.get("preprocessing", PreprocessingModel.class); SeatsResults seats = rslts.get("decomposition", SeatsResults.class); assertTrue(seats != null && regarima != null); if (regarima.isMultiplicative()) { s = s.log(); } int[] calPos = regarima.description.getRegressionVariablePositions(ComponentType.CalendarEffect); UcarimaModel ucm = seats.getUcarimaModel(); // compute the full decomposition... SsfUcarima stoch = new SsfUcarima(ucm); ExtendedSsfData xdata = new ExtendedSsfData(new SsfData(s, null)); xdata.setForecastsCount(s.getFrequency().intValue()); Matrix x = regarima .description .buildRegressionVariables() .all() .matrix(new TsDomain(s.getStart(), xdata.getCount())); RegSsf xssf = new RegSsf(stoch, x.subMatrix()); Filter filter = new Filter(); filter.setInitializer(new DiffuseSquareRootInitializer()); filter.setSsf(xssf); DiffuseFilteringResults fr = new DiffuseFilteringResults(true); fr.getVarianceFilter().setSavingP(true); fr.getFilteredData().setSavingA(true); filter.process(xdata, fr); Smoother smoother = new Smoother(); smoother.setSsf(xssf); smoother.setCalcVar(true); SmoothingResults sm = new SmoothingResults(); smoother.process(xdata, fr, sm); Smoother lsmoother = new Smoother(); lsmoother.setSsf(stoch); lsmoother.setCalcVar(true); SmoothingResults lsm = new SmoothingResults(); ExtendedSsfData xldata = new ExtendedSsfData(new SsfData(regarima.linearizedSeries(false), null)); xldata.setForecastsCount(s.getFrequency().intValue()); lsmoother.process(xldata, lsm); int spos = stoch.cmpPos(1); DataBlock Z = new DataBlock(xssf.getStateDim()); double[] v = new double[xdata.getCount()]; double[] c = new double[xdata.getCount()]; double[] svar = sm.componentVar(spos); double[] slvar = lsm.componentVar(spos); int start = regarima.description.getRegressionVariablesStartingPosition(); for (int i = 0; i < v.length; ++i) { Z.set(spos, 1); for (int j = 0; j < calPos.length; ++j) { Z.set(stoch.getStateDim() + calPos[j], x.get(i, calPos[j])); } v[i] = sm.zvariance(i, Z); Z.set(spos, 0); c[i] = sm.zvariance(i, Z); System.out.print(svar[i]); System.out.print('\t'); System.out.print(slvar[i]); System.out.print('\t'); System.out.print(c[i]); System.out.print('\t'); System.out.println(v[i]); } System.out.println(sm.P(50)); System.out.println(sm.P(svar.length - 1)); System.out.println(regarima.estimation.getLikelihood().getBVar()); }