public double logPdf(double x) {
   if (x < 0) return Double.NEGATIVE_INFINITY;
   double r = -1 * (mean * mean) / (mean - stdev * stdev);
   double p = mean / (stdev * stdev);
   return Math.log(Math.pow(1 - p, x))
       + Math.log(Math.pow(p, r))
       + GammaFunction.lnGamma(r + x)
       - GammaFunction.lnGamma(r)
       - GammaFunction.lnGamma(x + 1);
 }
 private void computeNormalizationConstant() {
   logNormalizationConstant = 0;
   try {
     logNormalizationConstant = df / 2.0 * Math.log(new Matrix(scaleMatrix).determinant());
   } catch (IllegalDimension illegalDimension) {
     illegalDimension.printStackTrace();
   }
   logNormalizationConstant -= df * dim / 2.0 * Math.log(2);
   logNormalizationConstant -= dim * (dim - 1) / 4.0 * Math.log(Math.PI);
   for (int i = 1; i <= dim; i++) {
     logNormalizationConstant -= GammaFunction.lnGamma((df + 1 - i) / 2.0);
   }
 }
  public double getLogLik2Group(int group1, int group2) {
    double L = 0.0;

    int ngroup1 = 0;
    for (int i = 0; i < assignments.getDimension(); i++) {
      if ((int) assignments.getParameterValue(i) == group1) {
        ngroup1++;
      }
    }

    int ngroup2 = 0;
    for (int i = 0; i < assignments.getDimension(); i++) {
      if ((int) assignments.getParameterValue(i) == group2) {
        ngroup2++;
      }
    }

    int ngroup = (ngroup1 + ngroup2);

    if (ngroup != 0) {
      double[][] group = new double[ngroup][2];

      double mean[] = new double[2];

      int count = 0;
      for (int i = 0; i < assignments.getDimension(); i++) {
        if ((int) assignments.getParameterValue(i) == group1) {
          group[count][0] = modelLikelihood.getData()[i][0];
          group[count][1] = modelLikelihood.getData()[i][1];
          mean[0] += group[count][0];
          mean[1] += group[count][1];
          count += 1;
        }
      }

      for (int i = 0; i < assignments.getDimension(); i++) {
        if ((int) assignments.getParameterValue(i) == group2) {
          group[count][0] = modelLikelihood.getData()[i][0];
          group[count][1] = modelLikelihood.getData()[i][1];
          mean[0] += group[count][0];
          mean[1] += group[count][1];
          count += 1;
        }
      }

      mean[0] /= ngroup;
      mean[1] /= ngroup;

      double kn = k0 + ngroup;
      double vn = v0 + ngroup;

      double[][] sumdif = new double[2][2];

      for (int i = 0; i < ngroup; i++) {
        sumdif[0][0] += (group[i][0] - mean[0]) * (group[i][0] - mean[0]);
        sumdif[0][1] += (group[i][0] - mean[0]) * (group[i][1] - mean[1]);
        sumdif[1][0] += (group[i][0] - mean[0]) * (group[i][1] - mean[1]);
        sumdif[1][1] += (group[i][1] - mean[1]) * (group[i][1] - mean[1]);
      }

      double[][] TnInv = new double[2][2];
      TnInv[0][0] =
          T0Inv[0][0] + ngroup * (k0 / kn) * (mean[0] - m[0]) * (mean[0] - m[0]) + sumdif[0][0];
      TnInv[0][1] =
          T0Inv[0][1] + ngroup * (k0 / kn) * (mean[1] - m[1]) * (mean[0] - m[0]) + sumdif[0][1];
      TnInv[1][0] =
          T0Inv[1][0] + ngroup * (k0 / kn) * (mean[0] - m[0]) * (mean[1] - m[1]) + sumdif[1][0];
      TnInv[1][1] =
          T0Inv[1][1] + ngroup * (k0 / kn) * (mean[1] - m[1]) * (mean[1] - m[1]) + sumdif[1][1];

      double logDetTn = -Math.log(TnInv[0][0] * TnInv[1][1] - TnInv[0][1] * TnInv[1][0]);

      L += -(ngroup) * Math.log(Math.PI);
      L += Math.log(k0) - Math.log(kn);
      L += (vn / 2) * logDetTn - (v0 / 2) * logDetT0;
      L += GammaFunction.lnGamma(vn / 2) + GammaFunction.lnGamma((vn / 2) - 0.5);
      L += -GammaFunction.lnGamma(v0 / 2) - GammaFunction.lnGamma((v0 / 2) - 0.5);
    }

    return L;
  }