/* * @param a Quell-Wellenform * @param env Ziel-RMS * @param average Laenge der Samples in a, aus denen jeweils ein RMS berechnet wird * (RMS = sqrt( energy/average )) * @param length Zahl der generierten RMS (in env) * @param lastEnergy Rueckgabewert aus dem letzten Aufruf dieser Routine * (richtige Initialisierung siehe process(): summe der quadrate der prebuffered samples) * @return neuer Energiewert, der beim naechsten Aufruf als lastEnergy uebergeben werden muss */ protected double calcEnv(float[] a, float[] env, int average, int length, double lastEnergy) { for (int i = 0, j = average; i < length; i++, j++) { // zu alten leistungswert "vergessen" und lastEnergy = lastEnergy - a[i] * a[i] + a[j] * a[j]; // neuen addieren env[i] = (float) Math.sqrt(lastEnergy / average); } return lastEnergy; }
protected void process() { int i, j, len, ch, chunkLength; long progOff, progLen; float f1; // io AudioFile inF = null; AudioFile outF = null; AudioFileDescr inStream; AudioFileDescr outStream; FloatFile[] floatF = null; File tempFile[] = null; // buffers float[][] inBuf, outBuf; float[] win; float[] convBuf1, convBuf2; float[] tempFlt; int inChanNum, inLength, inputStep, outputStep, winSize; int transLen, skip, inputLen, outputLen, fltLen; int framesRead, framesWritten; float warp, a1, b0, b1, x0, x1, y0, y1, b0init; Param ampRef = new Param(1.0, Param.ABS_AMP); // transform-Referenz Param peakGain; float gain = 1.0f; // gain abs amp float maxAmp = 0.0f; PathField ggOutput; topLevel: try { // ---- open input, output ---- // input inF = AudioFile.openAsRead(new File(pr.text[PR_INPUTFILE])); inStream = inF.getDescr(); inChanNum = inStream.channels; inLength = (int) inStream.length; // this helps to prevent errors from empty files! if ((inLength * inChanNum) < 1) throw new EOFException(ERR_EMPTY); // .... check running .... if (!threadRunning) break topLevel; // output ggOutput = (PathField) gui.getItemObj(GG_OUTPUTFILE); if (ggOutput == null) throw new IOException(ERR_MISSINGPROP); outStream = new AudioFileDescr(inStream); ggOutput.fillStream(outStream); outF = AudioFile.openAsWrite(outStream); // .... check running .... if (!threadRunning) break topLevel; // ---- parameter inits ---- warp = Math.max(-0.98f, Math.min(0.98f, (float) (pr.para[PR_WARP].val / 100))); // DAFx2000 'b' f1 = (1.0f - warp) / (1.0f + warp); // DAFx2000 (25) winSize = 32 << pr.intg[PR_FRAMESIZE]; // DAFx2000 'N' j = winSize >> 1; transLen = (int) (f1 * winSize + 0.5f); // DAFx2000 'P' (26) i = pr.intg[PR_OVERLAP] + 1; while (((float) transLen / (float) i) > j) i++; inputStep = (int) (((float) transLen / (float) i) + 0.5f); // DAFx2000 'L' fltLen = Math.max(winSize, transLen); // System.out.println( "inputStep "+inputStep+"; winSize "+winSize+"; transLen "+transLen+"; // fltLen "+fltLen+"; warp "+warp+"; � "+f1 ); win = Filter.createFullWindow(winSize, Filter.WIN_HANNING); // DAFx2000 (27) outputStep = inputStep; b0init = (float) Math.sqrt(1.0f - warp * warp); progOff = 0; progLen = (long) inLength * (2 + inChanNum); // + winSize; tempFlt = new float[fltLen]; inputLen = winSize + inputStep; inBuf = new float[inChanNum][inputLen]; outputLen = transLen + outputStep; outBuf = new float[inChanNum][outputLen]; // normalization requires temp files if (pr.intg[PR_GAINTYPE] == GAIN_UNITY) { tempFile = new File[inChanNum]; floatF = new FloatFile[inChanNum]; for (ch = 0; ch < inChanNum; ch++) { // first zero them because an exception might be thrown tempFile[ch] = null; floatF[ch] = null; } for (ch = 0; ch < inChanNum; ch++) { tempFile[ch] = IOUtil.createTempFile(); floatF[ch] = new FloatFile(tempFile[ch], GenericFile.MODE_OUTPUT); } progLen += (long) inLength; } else { gain = (float) ((Param.transform(pr.para[PR_GAIN], Param.ABS_AMP, ampRef, null)).val); } // .... check running .... if (!threadRunning) break topLevel; // ----==================== the real stuff ====================---- framesRead = 0; framesWritten = 0; skip = 0; while (threadRunning && (framesWritten < inLength)) { chunkLength = Math.min(inputLen, inLength - framesRead + skip); // ---- read input chunk ---- len = Math.max(0, chunkLength - skip); inF.readFrames(inBuf, skip, len); framesRead += len; progOff += len; // off += len; // .... progress .... setProgression((float) progOff / (float) progLen); // .... check running .... if (!threadRunning) break topLevel; // zero padding if (chunkLength < inputLen) { for (ch = 0; ch < inChanNum; ch++) { convBuf1 = inBuf[ch]; for (i = chunkLength; i < convBuf1.length; i++) { convBuf1[i] = 0.0f; } } } for (ch = 0; threadRunning && (ch < inChanNum); ch++) { convBuf1 = inBuf[ch]; convBuf2 = outBuf[ch]; for (i = 0, j = fltLen; i < winSize; i++) { tempFlt[--j] = convBuf1[i] * win[i]; } while (j > 0) { tempFlt[--j] = 0.0f; } a1 = -warp; // inital allpass b0 = b0init; b1 = 0.0f; for (j = 0; j < transLen; j++) { x1 = 0.0f; y1 = 0.0f; // for( i = 0; i < transLen; i++ ) { // DAFx2000 (2 resp. 3) for (i = 0; i < fltLen; i++) { // DAFx2000 (2 resp. 3) x0 = tempFlt[i]; y0 = b0 * x0 + b1 * x1 - a1 * y1; tempFlt[i] = y0; // (work with double precision while computing cascades) y1 = y0; x1 = x0; } a1 = -warp; // cascaded allpasses b0 = -warp; b1 = 1.0f; convBuf2[j] += (float) y1; } // .... progress .... progOff += chunkLength - skip; setProgression((float) progOff / (float) progLen); } // for channels // .... check running .... if (!threadRunning) break topLevel; chunkLength = Math.min(outputStep, inLength - framesWritten); // ---- write output chunk ---- if (floatF != null) { for (ch = 0; ch < inChanNum; ch++) { floatF[ch].writeFloats(outBuf[ch], 0, chunkLength); } progOff += chunkLength; // off += len; framesWritten += chunkLength; // .... progress .... setProgression((float) progOff / (float) progLen); } else { for (ch = 0; ch < inChanNum; ch++) { Util.mult(outBuf[ch], 0, chunkLength, gain); } outF.writeFrames(outBuf, 0, chunkLength); progOff += chunkLength; // off += len; framesWritten += chunkLength; // .... progress .... setProgression((float) progOff / (float) progLen); } // .... check running .... if (!threadRunning) break topLevel; // check max amp for (ch = 0; ch < inChanNum; ch++) { convBuf1 = outBuf[ch]; for (i = 0; i < chunkLength; i++) { f1 = Math.abs(convBuf1[i]); if (f1 > maxAmp) { maxAmp = f1; } } } // overlaps skip = winSize; for (ch = 0; ch < inChanNum; ch++) { System.arraycopy(inBuf[ch], inputStep, inBuf[ch], 0, winSize); convBuf1 = outBuf[ch]; System.arraycopy(convBuf1, outputStep, convBuf1, 0, transLen); for (i = transLen; i < outputLen; ) { convBuf1[i++] = 0.0f; } } } // until framesWritten == outLength // .... check running .... if (!threadRunning) break topLevel; // ----==================== normalize output ====================---- if (pr.intg[PR_GAINTYPE] == GAIN_UNITY) { peakGain = new Param((double) maxAmp, Param.ABS_AMP); gain = (float) (Param.transform( pr.para[PR_GAIN], Param.ABS_AMP, new Param(1.0 / peakGain.val, peakGain.unit), null)) .val; normalizeAudioFile(floatF, outF, inBuf, gain, 1.0f); maxAmp *= gain; for (ch = 0; ch < inChanNum; ch++) { floatF[ch].cleanUp(); floatF[ch] = null; tempFile[ch].delete(); tempFile[ch] = null; } } // .... check running .... if (!threadRunning) break topLevel; // ---- Finish ---- outF.close(); outF = null; outStream = null; inF.close(); inF = null; inStream = null; inBuf = null; // inform about clipping/ low level handleClipping(maxAmp); } catch (IOException e1) { setError(e1); } catch (OutOfMemoryError e2) { inStream = null; outStream = null; inBuf = null; convBuf1 = null; convBuf2 = null; System.gc(); setError(new Exception(ERR_MEMORY)); ; } // ---- cleanup (topLevel) ---- if (inF != null) { inF.cleanUp(); inF = null; } if (outF != null) { outF.cleanUp(); outF = null; } if (floatF != null) { for (ch = 0; ch < floatF.length; ch++) { if (floatF[ch] != null) { floatF[ch].cleanUp(); floatF[ch] = null; } if (tempFile[ch] != null) { tempFile[ch].delete(); tempFile[ch] = null; } } } } // process()