@Test public void testMeanNormalizeRows() { DoubleMatrix mat = new DenseDoubleMatrix(new double[][] {{2, 5}, {5, 1}, {7, 25}}); Tuple<DoubleMatrix, DoubleVector> normal = MathUtils.meanNormalizeRows(mat); DoubleVector mean = normal.getSecond(); assertSmallDiff(mean, new DenseDoubleVector(new double[] {3.5d, 3d, 16d})); DoubleMatrix meanNormalizedMatrix = normal.getFirst(); DoubleMatrix matNormal = new DenseDoubleMatrix(new double[][] {{-1.5, 1.5}, {2, -2}, {-9, 9}}); for (int i = 0; i < 3; i++) { assertSmallDiff(meanNormalizedMatrix.getRowVector(i), matNormal.getRowVector(i)); } }
/** * Minimizes the given CostFunction with Nonlinear conjugate gradient method. <br> * It uses the Polack-Ribiere (PR) to calculate the conjugate direction. See <br> * {@link http://en.wikipedia.org/wiki/Nonlinear_conjugate_gradient_method} <br> * for more information. * * @param f the cost function to minimize. * @param pInput the input vector, also called starting point * @param length the number of iterations to make * @param verbose output the progress to STDOUT * @return a vector containing the optimized input */ public static DoubleVector minimizeFunction( CostFunction f, DoubleVector pInput, int length, boolean verbose) { DoubleVector input = pInput; int M = 0; int i = 0; // zero the run length counter int red = 1; // starting point int ls_failed = 0; // no previous line search has failed DenseDoubleVector fX = new DenseDoubleVector(0); // what we return as fX // get function value and gradient final Tuple<Double, DoubleVector> evaluateCost = f.evaluateCost(input); double f1 = evaluateCost.getFirst(); DoubleVector df1 = evaluateCost.getSecond(); i = i + (length < 0 ? 1 : 0); DoubleVector s = df1.multiply(-1.0d); // search direction is // steepest double d1 = s.multiply(-1.0d).dot(s); // this is the slope double z1 = red / (1.0 - d1); // initial step is red/(|s|+1) while (i < Math.abs(length)) { // while not finished i = i + (length > 0 ? 1 : 0); // count iterations?! // make a copy of current values DoubleVector X0 = input.deepCopy(); double f0 = f1; DoubleVector df0 = df1.deepCopy(); // begin line search input = input.add(s.multiply(z1)); final Tuple<Double, DoubleVector> evaluateCost2 = f.evaluateCost(input); double f2 = evaluateCost2.getFirst(); DoubleVector df2 = evaluateCost2.getSecond(); i = i + (length < 0 ? 1 : 0); // count epochs?! double d2 = df2.dot(s); // initialize point 3 equal to point 1 double f3 = f1; double d3 = d1; double z3 = -z1; if (length > 0) { M = MAX; } else { M = Math.min(MAX, -length - i); } // initialize quanteties int success = 0; double limit = -1; while (true) { while (((f2 > f1 + z1 * RHO * d1) | (d2 > -SIG * d1)) && (M > 0)) { limit = z1; // tighten the bracket double z2 = 0.0d; double A = 0.0d; double B = 0.0d; if (f2 > f1) { // quadratic fit z2 = z3 - (0.5 * d3 * z3 * z3) / (d3 * z3 + f2 - f3); } else { A = 6 * (f2 - f3) / z3 + 3 * (d2 + d3); // cubic fit B = 3 * (f3 - f2) - z3 * (d3 + 2 * d2); // numerical error possible - ok! z2 = (Math.sqrt(B * B - A * d2 * z3 * z3) - B) / A; } if (Double.isNaN(z2) || Double.isInfinite(z2)) { z2 = z3 / 2.0d; // if we had a numerical problem then // bisect } // don't accept too close to limits z2 = Math.max(Math.min(z2, INT * z3), (1 - INT) * z3); z1 = z1 + z2; // update the step input = input.add(s.multiply(z2)); final Tuple<Double, DoubleVector> evaluateCost3 = f.evaluateCost(input); f2 = evaluateCost3.getFirst(); df2 = evaluateCost3.getSecond(); M = M - 1; i = i + (length < 0 ? 1 : 0); // count epochs?! d2 = df2.dot(s); z3 = z3 - z2; // z3 is now relative to the location of z2 } if (f2 > f1 + z1 * RHO * d1 || d2 > -SIG * d1) { break; // this is a failure } else if (d2 > SIG * d1) { success = 1; break; // success } else if (M == 0) { break; // failure } double A = 6 * (f2 - f3) / z3 + 3 * (d2 + d3); // make cubic // extrapolation double B = 3 * (f3 - f2) - z3 * (d3 + 2 * d2); double z2 = -d2 * z3 * z3 / (B + Math.sqrt(B * B - A * d2 * z3 * z3)); // num prob or wrong sign? if (Double.isNaN(z2) || Double.isInfinite(z2) || z2 < 0) if (limit < -0.5) { // if we have no upper limit z2 = z1 * (EXT - 1); // the extrapolate the maximum // amount } else { z2 = (limit - z1) / 2; // otherwise bisect } else if ((limit > -0.5) && (z2 + z1 > limit)) { // extraplation beyond max? z2 = (limit - z1) / 2; // bisect } else if ((limit < -0.5) && (z2 + z1 > z1 * EXT)) { // extrapolationbeyond limit z2 = z1 * (EXT - 1.0); // set to extrapolation limit } else if (z2 < -z3 * INT) { z2 = -z3 * INT; } else if ((limit > -0.5) && (z2 < (limit - z1) * (1.0 - INT))) { // too close to the limit z2 = (limit - z1) * (1.0 - INT); } // set point 3 equal to point 2 f3 = f2; d3 = d2; z3 = -z2; z1 = z1 + z2; // update current estimates input = input.add(s.multiply(z2)); final Tuple<Double, DoubleVector> evaluateCost3 = f.evaluateCost(input); f2 = evaluateCost3.getFirst(); df2 = evaluateCost3.getSecond(); M = M - 1; i = i + (length < 0 ? 1 : 0); // count epochs?! d2 = df2.dot(s); } // end of line search DoubleVector tmp = null; if (success == 1) { // if line search succeeded f1 = f2; fX = new DenseDoubleVector(fX.toArray(), f1); if (verbose) System.out.print("Iteration " + i + " | Cost: " + f1 + "\r"); // Polack-Ribiere direction: s = // (df2'*df2-df1'*df2)/(df1'*df1)*s - df2; final double numerator = (df2.dot(df2) - df1.dot(df2)) / df1.dot(df1); s = s.multiply(numerator).subtract(df2); tmp = df1; df1 = df2; df2 = tmp; // swap derivatives d2 = df1.dot(s); if (d2 > 0) { // new slope must be negative s = df1.multiply(-1.0d); // otherwise use steepest direction d2 = s.multiply(-1.0d).dot(s); } // realmin in octave = 2.2251e-308 // slope ratio but max RATIO z1 = z1 * Math.min(RATIO, d1 / (d2 - 2.2251e-308)); d1 = d2; ls_failed = 0; // this line search did not fail } else { input = X0; f1 = f0; df1 = df0; // restore point from before failed line search // line search failed twice in a row? if (ls_failed == 1 || i > Math.abs(length)) { break; // or we ran out of time, so we give up } tmp = df1; df1 = df2; df2 = tmp; // swap derivatives s = df1.multiply(-1.0d); // try steepest d1 = s.multiply(-1.0d).dot(s); z1 = 1.0d / (1.0d - d1); ls_failed = 1; // this line search failed } } return input; }