public static void main(String[] args) throws IOException { // String fileInputReq = args[0]; // float bid_price = Float.valueOf(args[1]); // String model_para = args[2]; // String fileOutReq = args[3]; String fileInputReq = "test.txt"; String str = "0.150000000"; float bid_price = Float.parseFloat(str); System.out.println(bid_price); String dict = "dict"; String model_para = "train.model"; String resultsOut = "results.txt"; TestDataGen2 saj = new TestDataGen2(); long startTime = System.currentTimeMillis(); String ReqLine = saj.dataMergeReq(fileInputReq, bid_price); // System.out.println(ReqLine); String cutdic = saj.MakeDict(ReqLine); // System.out.println(cutdic); // String ReqLineFormat = saj.dictGet(cutdic,dict); String outputs = "result.txt"; saj.dictGet(cutdic, dict, outputs); // System.out.println(ReqLineFormat); String[] arg = {"-b", "1", outputs, model_para, resultsOut}; Predict.main(arg); long endTime = System.currentTimeMillis(); long trainTime = endTime - startTime; System.out.println(trainTime + "ms\n"); }
public static void RetrieveTrainMatrix() { try { BufferedReader flrdr = new BufferedReader( new FileReader("D:\\IR\\Assignment7\\Pytest\\part2\\output\\train_matrix.txt")); String line = ""; int doc_count = 0; while ((line = flrdr.readLine()) != null) { SortedSet<Integer> word_ids = new TreeSet<Integer>(); int val_count = 0; String[] key_value = line.split(" :: "); key_value[1] = key_value[1].substring(1, key_value[1].length() - 2); String[] values = key_value[1].split(","); FeatureNode[] node = new FeatureNode[values.length]; for (String val : values) word_ids.add(Integer.parseInt(val.trim())); for (int val : word_ids) node[val_count++] = new FeatureNode(val, 1); if (spam_docs.contains(key_value[0].trim())) ylable[doc_count] = 1; else ylable[doc_count] = 0; train_matrix[doc_count++] = node; } flrdr.close(); } catch (Exception e) { e.printStackTrace(); System.exit(0); } }
ABSAClassifierHotels(int option, String trainFile, String testFile, String ddgFile) throws IOException { rootDirectory = System.getProperty("user.dir"); mainClassifierFunction(option, trainFile, testFile, ddgFile); // rootDirectory = "D:\\Course\\Semester VII\\Internship\\sentiment\\indian"; // return generateFeature(); }
public static void RetrieveTestMatrix() { try { BufferedReader flrdr = new BufferedReader( new FileReader("D:\\IR\\Assignment7\\Pytest\\part2\\output\\test_matrix.txt")); String line = ""; while ((line = flrdr.readLine()) != null) { SortedSet<Integer> word_ids = new TreeSet<Integer>(); int val_count = 0; String[] key_value = line.split(" :: "); if (key_value[1].trim().length() < 1) System.out.println("Error on Train Doc " + key_value[0]); key_value[1] = key_value[1].substring(1, key_value[1].length() - 2); String[] values = key_value[1].split(","); FeatureNode[] node = new FeatureNode[values.length]; for (String val : values) word_ids.add(Integer.parseInt(val.trim())); for (int val : word_ids) node[val_count++] = new FeatureNode(val, 1); double predict = Linear.predict(model, node); doc_score.put(key_value[0].trim(), predict); } flrdr.close(); } catch (Exception e) { e.printStackTrace(); System.exit(0); } }