public void init(ObjectiveFunction function) { generator = new Random(); this.function = function; dimension = function.getDimension(); min = Math.max(min, function.getMinimum()[0]); max = Math.min(max, function.getMaximum()[0]); means = new double[dimension]; deviations = new double[dimension]; paths = new ValuePoint[populationSize]; best = ValuePoint.at(Point.getDefault(), Double.POSITIVE_INFINITY); stopCondition.setInitialValue(Double.POSITIVE_INFINITY); for (int i = 0; i < dimension; i++) { means[i] = (generator.nextDouble() * (max - min)) + min; deviations[i] = (max - min) / 2; } }
public void optimize() { for (int ant = 0; ant < populationSize; ant++) { // generate solution double[] newPoint = new double[dimension]; for (int d = 0; d < dimension; d++) newPoint[d] = (generator.nextGaussian() * deviations[d]) + means[d]; // improve solution using gradient if (gradientWeight != 0.0) { double[] gradient = function.gradientAt(Point.at(newPoint)).toArray(); for (int d = 0; d < dimension; d++) newPoint[d] -= gradientWeight * gradient[d]; } // get solution error (& update best solution double error = function.valueAt(Point.at(newPoint)); paths[ant] = ValuePoint.at(Point.at(newPoint), error); if (error < best.getValue()) best = paths[ant]; // ValuePoint.at(Point.at(newPoint), error); } // update pheromone double[] bestVect = best.getPoint().toArray(); for (int i = 0; i < dimension; i++) { deviations[i] = (1 - evaporationFactor) * deviations[i] + evaporationFactor * Math.abs(bestVect[i] - means[i]); means[i] = (1 - evaporationFactor) * means[i] + evaporationFactor * bestVect[i]; } telemetry = new ValuePointListTelemetry(Arrays.asList(paths)); if (consumer != null) consumer.notifyOf(this); stopCondition.setValue(best.getValue()); }
public void optimize() { System.arraycopy(x, 0, xNew, 0, dimension); lineSearchMethod.minimize(xNew, direction); for (int i = 0; i < dimension; i++) xDelta[i] = xNew[i] - x[i]; System.arraycopy(xNew, 0, x, 0, dimension); System.arraycopy(g, 0, y, 0, dimension); g = function.gradientAt(Point.at(x)).toArray(); for (int i = 0; i < dimension; i++) y[i] = g[i] - y[i]; for (int i = 0; i < dimension; i++) { Hy[i] = 0.0; for (int j = 0; j < dimension; j++) Hy[i] += H[i][j] * y[j]; } fac = 0.0; fae = 0.0; sumY = 0.0; sumXDelta = 0.0; for (int i = 0; i < dimension; i++) { fac += y[i] * xDelta[i]; fae += y[i] * Hy[i]; sumY += y[i] * y[i]; sumXDelta += xDelta[i] * xDelta[i]; } if (fac > Math.sqrt(MachineAccuracy.EPSILON * sumY * sumXDelta)) { fac = 1.0 / fac; fad = 1.0 / fae; switch (updateMethod) { case DFP: for (int i = 0; i < dimension; i++) for (int j = i; j < dimension; j++) { H[i][j] += fac * xDelta[i] * xDelta[j] - fad * Hy[i] * Hy[j]; H[j][i] = H[i][j]; } break; case BFGS: for (int i = 0; i < dimension; i++) y[i] = fac * xDelta[i] - fad * Hy[i]; for (int i = 0; i < dimension; i++) for (int j = i; j < dimension; j++) { H[i][j] += fac * xDelta[i] * xDelta[j] - fad * Hy[i] * Hy[j] + fae * y[i] * y[j]; H[j][i] = H[i][j]; } break; case BROYDEN_FAMILY: for (int i = 0; i < dimension; i++) y[i] = fac * xDelta[i] - fad * Hy[i]; for (int i = 0; i < dimension; i++) for (int j = i; j < dimension; j++) { H[i][j] += fac * xDelta[i] * xDelta[j] - fad * Hy[i] * Hy[j] + phi * (fae * y[i] * y[j]); H[j][i] = H[i][j]; } break; case BROYDEN: fae = 0.0; for (int i = 0; i < dimension; i++) { xH[i] = 0.0; for (int j = 0; j < dimension; j++) xH[i] += xDelta[j] * H[j][i]; fae += xDelta[i] * Hy[i]; } fae = 1.0 / fae; for (int i = 0; i < dimension; i++) { y[i] = xDelta[i] - Hy[i]; for (int j = i; j < dimension; j++) { H[i][j] += fae * y[i] * xH[j]; H[j][i] = H[i][j]; } } break; } } for (int i = 0; i < dimension; i++) { direction[i] = 0.0; for (int j = 0; j < dimension; j++) direction[i] -= H[i][j] * g[j]; } solution = ValuePoint.at(Point.at(x), function); telemetry = new ValuePointTelemetry(solution); if (consumer != null) consumer.notifyOf(this); stopCondition.setValue(solution.getValue()); }