@Override public void close() { if (attributeEditor.hasDataChanged()) { int selectedOption = JOptionPane.showConfirmDialog( this, "It seems that you have changed the data without saving it afterwards." + Tools.getLineSeparator() + "Do you still want to proceed and close the editor (changes will be lost)?", "Save data file?", JOptionPane.YES_NO_OPTION, JOptionPane.QUESTION_MESSAGE); if (selectedOption == JOptionPane.YES_OPTION) dispose(); } else if (attributeEditor.hasMetaDataChanged()) { int selectedOption = JOptionPane.showConfirmDialog( this, "It seems that you have changed the attribute descriptions without saving an attribute description file (.aml) afterwards." + Tools.getLineSeparator() + "Do you still want to proceed and close the editor (changes will be lost)?", "Save attribute description file?", JOptionPane.YES_NO_OPTION, JOptionPane.QUESTION_MESSAGE); if (selectedOption == JOptionPane.YES_OPTION) dispose(); } else { dispose(); } }
@Override public String toResultString() { StringBuilder result = new StringBuilder( Tools.getLineSeparator() + "Principal Components:" + Tools.getLineSeparator()); if (manualNumber) { result.append("Number of Components: " + numberOfComponents + Tools.getLineSeparator()); } else { result.append("Proportion Threshold: " + proportionThreshold + Tools.getLineSeparator()); } for (int i = 0; i < vMatrix.getColumnDimension(); i++) { result.append("PC " + (i + 1) + ": "); for (int j = 0; j < attributeNames.length; j++) { double value = vMatrix.get(i, j); if (value > 0) { result.append(" + "); } else { result.append(" - "); } result.append(Tools.formatNumber(Math.abs(value)) + " * " + attributeNames[j]); } result.append(Tools.getLineSeparator()); } return result.toString(); }
@Override public String toString() { StringBuilder result = new StringBuilder( Tools.getLineSeparator() + "Principal Components:" + Tools.getLineSeparator()); if (manualNumber) { result.append("Number of Components: " + numberOfComponents + Tools.getLineSeparator()); } else { result.append("Variance Threshold: " + varianceThreshold + Tools.getLineSeparator()); } return result.toString(); }
@Override public String toString() { StringBuffer result = new StringBuffer(Tools.getLineSeparator() + "PerformanceVector ["); for (int i = 0; i < size(); i++) { Averagable avg = getAveragable(i); if ((mainCriterion != null) && (avg.getName().equals(mainCriterion))) { result.append(Tools.getLineSeparator() + "*****"); } else { result.append(Tools.getLineSeparator() + "-----"); } result.append(avg); } result.append(Tools.getLineSeparator() + "]"); return result.toString(); }
public String toString(int maxNumber) { Collections.sort(associationRules); StringBuffer buffer = new StringBuffer("Association Rules" + Tools.getLineSeparator()); int counter = 0; for (AssociationRule rule : associationRules) { if ((maxNumber >= 0) && (counter > maxNumber)) { buffer.append("... " + (associationRules.size() - maxNumber) + " other rules ..."); break; } buffer.append(rule.toString()); buffer.append(Tools.getLineSeparator()); counter++; } return buffer.toString(); }
@Override public String toString() { StringBuilder builder = new StringBuilder(); builder.append("Threshold: "); builder.append(threshold); builder.append(Tools.getLineSeparator()); builder.append("first class: "); builder.append(zeroClass); builder.append(Tools.getLineSeparator()); builder.append("second class: "); builder.append(oneClass); builder.append(Tools.getLineSeparator()); builder.append("if confidence(" + oneClass + ") > " + threshold + " then " + oneClass); builder.append(Tools.getLineSeparator()); builder.append("else " + zeroClass); return builder.toString(); }
/** Sends the output to the LogService. */ private void logOutput(String message, InputStream in) throws IOException { BufferedReader bin = new BufferedReader(new InputStreamReader(in)); String line = null; StringBuffer buffer = new StringBuffer(message); while ((line = bin.readLine()) != null) { buffer.append(Tools.getLineSeparator()); buffer.append(line); } logNote(buffer.toString()); }
@Override public String toResultString() { StringBuilder builder = new StringBuilder(); builder.append( "Denormalization Model of the following Normalization:" + Tools.getLineSeparator()); builder.append(invertedModel.toResultString()); return builder.toString(); }
@Override public String toString() { StringBuffer result = new StringBuffer( "IOContainer (" + ioObjects.size() + " objects):" + Tools.getLineSeparator()); Iterator i = ioObjects.iterator(); while (i.hasNext()) { IOObject current = (IOObject) i.next(); if (current != null) { result.append( current.toString() + Tools.getLineSeparator() + (current.getSource() != null ? "(created by " + current.getSource() + ")" + Tools.getLineSeparator() : "")); } } return result.toString(); }
/** @return a <code>String</code> representation of this scaling model. */ @Override public String toString() { String result = super.toString() + " (" + this.parameters.toString() + ") " + Tools.getLineSeparator() + "Model: " + model.toResultString(); return result; }
@Override public String toString() { StringBuffer buffer = new StringBuffer(); if ((classPositive != null) && (classNegative != null)) buffer.append( "Hyperplane seperating " + classPositive + " and " + classNegative + "." + Tools.getLineSeparator()); else buffer.append("Hyperplane for linear regression." + Tools.getLineSeparator()); buffer.append("Intercept: "); buffer.append(Double.toString(intercept)); buffer.append(Tools.getLineSeparator()); buffer.append("Coefficients: " + Tools.getLineSeparator()); int counter = 0; for (double value : coefficients) { buffer.append( "w(" + coefficientNames[counter] + ") = " + Tools.formatIntegerIfPossible(value, 3) + Tools.getLineSeparator()); counter++; } buffer.append(Tools.getLineSeparator()); return buffer.toString(); }
@Override public String toResultString() { StringBuilder result = new StringBuilder( Tools.getLineSeparator() + "Principal Components:" + Tools.getLineSeparator()); if (manualNumber) { result.append("Number of Components: " + numberOfComponents + Tools.getLineSeparator()); } else { result.append("Variance Threshold: " + varianceThreshold + Tools.getLineSeparator()); } for (int i = 0; i < eigenVectors.size(); i++) { result.append("PC " + (i + 1) + ": "); for (int j = 0; j < attributeNames.length; j++) { double value = eigenVectors.get(i).getEigenvector()[j]; if (value > 0) result.append(" + "); else result.append(" - "); result.append(Tools.formatNumber(Math.abs(value)) + " * " + attributeNames[j]); } result.append(Tools.getLineSeparator()); } return result.toString(); }
/** @return a <code>String</code> representation of this boosting model. */ @Override public String toString() { StringBuffer result = new StringBuffer( super.toString() + Tools.getLineSeparator() + "Number of inner models: " + this.getNumberOfModels() + Tools.getLineSeparators(2)); for (int i = 0; i < this.getNumberOfModels(); i++) { Model model = this.getModel(i); result.append( (i > 0 ? Tools.getLineSeparator() : "") + "Embedded model #" + i + " (weight: " + Tools.formatNumber(this.getWeightForModel(i)) + "): " + Tools.getLineSeparator() + model.toResultString()); } return result.toString(); }
public String toString(int numberOfExamples, boolean onlySV) { StringBuffer result = new StringBuffer( "SVM Example Set (" + (onlySV ? (getNumberOfSupportVectors() + " support vectors") : (train_size + " examples")) + "):" + Tools.getLineSeparator() + "b: " + b + Tools.getLineSeparator()); for (int e = 0; e < numberOfExamples; e++) { if (!onlySV || (alphas[e] != 0.0d)) { for (int a = 0; a < atts[e].length; a++) { result.append(index[e][a] + ":"); result.append(atts[e][a] + " "); } result.append(", alpha: " + alphas[e]); result.append(", y: " + ys[e] + Tools.getLineSeparator()); } } return result.toString(); }
/** @return a <code>String</code> representation of this rule model. */ public String toString() { StringBuffer result = new StringBuffer( super.toString() + Tools.getLineSeparator() + " (" + this.getLabel().getName() + "=" + (this.getLabel().getMapping().mapIndex(this.predictedLabel)) + ") <-- "); for (int i = 0; i < this.getRuleLength(); i++) { Attribute att = this.getAttributeOfLiteral(i); String val = att.getMapping().mapIndex((int) this.getTestedValueAtLiteral(i)); result.append((i > 0 ? ", " : "") + ("(" + att.getName() + "=" + val + ")")); } return result.toString(); }
protected String createProcessTree( int indent, String selfPrefix, String childPrefix, Operator markOperator, String mark) { String tree = Tools.indent(indent) + " subprocess '" + getName() + "'"; Iterator<Operator> i = operators.iterator(); while (i.hasNext()) { tree += Tools.getLineSeparator() + i.next() .createProcessTree( indent, childPrefix + "+- ", childPrefix + (i.hasNext() ? "| " : " "), markOperator, mark); } return tree; }
@Override public String toString() { StringBuffer distributionDescription = new StringBuffer(); boolean first = true; for (int i = 0; i < valueNames.length; i++) { if (!first) { distributionDescription.append("\t"); } distributionDescription.append(valueNames[i]); first = false; } first = true; distributionDescription.append(Tools.getLineSeparator()); for (int i = 0; i < valueNames.length; i++) { if (!first) { distributionDescription.append("\t"); } distributionDescription.append(Tools.formatNumber(probabilities[i])); first = false; } return distributionDescription.toString(); }
public String toString() { StringBuffer s = new StringBuffer("A cluster model with the following properties:"); s.append(Tools.getLineSeparator()); if (properties.getKeys().hasNext()) s.append(Tools.getLineSeparator() + properties.toString()); return s.toString(); }
@Override public String toString() { return indexToSymbolMap.toString() + Tools.getLineSeparator() + symbolToIndexMap.toString(); }