@Test
 /** Tests the curve sensitivity. */
 public void presentValueCurveSensitivity() {
   InterestRateCurveSensitivity pvsSwaption =
       METHOD_HW_APPROXIMATION.presentValueCurveSensitivity(SWAPTION_PAYER_LONG, BUNDLE_HW);
   pvsSwaption = pvsSwaption.cleaned();
   final double deltaTolerancePrice = 1.0E+4;
   // Testing note: Sensitivity is for a movement of 1. 1E+2 = 1 cent for a 1 bp move. Tolerance
   // increased to cope with numerical imprecision of finite difference.
   final double deltaShift = 1.0E-6;
   // 1. Forward curve sensitivity
   final String bumpedCurveName = "Bumped Curve";
   final SwaptionCashFixedIbor swptBumpedForward =
       SWAPTION_PAYER_LONG_DEFINITION.toDerivative(
           REFERENCE_DATE, new String[] {CURVES_NAME[0], bumpedCurveName});
   DoubleAVLTreeSet forwardTime = new DoubleAVLTreeSet();
   for (int loopcpn = 0;
       loopcpn < SWAPTION_PAYER_LONG.getUnderlyingSwap().getSecondLeg().getNumberOfPayments();
       loopcpn++) {
     CouponIbor cpn =
         (CouponIbor)
             SWAPTION_PAYER_LONG.getUnderlyingSwap().getSecondLeg().getNthPayment(loopcpn);
     forwardTime.add(cpn.getFixingPeriodStartTime());
     forwardTime.add(cpn.getFixingPeriodEndTime());
   }
   double[] nodeTimesForward = forwardTime.toDoubleArray();
   final double[] sensiForwardMethod =
       SensitivityFiniteDifference.curveSensitivity(
           swptBumpedForward,
           BUNDLE_HW,
           CURVES_NAME[1],
           bumpedCurveName,
           nodeTimesForward,
           deltaShift,
           METHOD_HW_APPROXIMATION);
   final List<DoublesPair> sensiPvForward = pvsSwaption.getSensitivities().get(CURVES_NAME[1]);
   for (int loopnode = 0; loopnode < sensiForwardMethod.length; loopnode++) {
     final DoublesPair pairPv = sensiPvForward.get(loopnode);
     assertEquals(
         "Sensitivity swaption pv to forward curve: Node " + loopnode,
         nodeTimesForward[loopnode],
         pairPv.getFirst(),
         1E-8);
     assertEquals(
         "Sensitivity finite difference method: node sensitivity " + loopnode,
         sensiForwardMethod[loopnode],
         pairPv.second,
         deltaTolerancePrice);
   }
   // 2. Discounting curve sensitivity
   final SwaptionCashFixedIbor swptBumpedDisc =
       SWAPTION_PAYER_LONG_DEFINITION.toDerivative(
           REFERENCE_DATE, new String[] {bumpedCurveName, CURVES_NAME[1]});
   DoubleAVLTreeSet discTime = new DoubleAVLTreeSet();
   discTime.add(SWAPTION_PAYER_LONG.getSettlementTime());
   for (int loopcpn = 0;
       loopcpn < SWAPTION_PAYER_LONG.getUnderlyingSwap().getSecondLeg().getNumberOfPayments();
       loopcpn++) {
     CouponIbor cpn =
         (CouponIbor)
             SWAPTION_PAYER_LONG.getUnderlyingSwap().getSecondLeg().getNthPayment(loopcpn);
     discTime.add(cpn.getPaymentTime());
   }
   double[] nodeTimesDisc = discTime.toDoubleArray();
   final double[] sensiDiscMethod =
       SensitivityFiniteDifference.curveSensitivity(
           swptBumpedDisc,
           BUNDLE_HW,
           CURVES_NAME[0],
           bumpedCurveName,
           nodeTimesDisc,
           deltaShift,
           METHOD_HW_APPROXIMATION);
   assertEquals(
       "Sensitivity finite difference method: number of node", 11, sensiDiscMethod.length);
   final List<DoublesPair> sensiPvDisc = pvsSwaption.getSensitivities().get(CURVES_NAME[0]);
   for (int loopnode = 0; loopnode < sensiDiscMethod.length; loopnode++) {
     final DoublesPair pairPv = sensiPvDisc.get(loopnode);
     assertEquals(
         "Sensitivity swaption pv to forward curve: Node " + loopnode,
         nodeTimesDisc[loopnode],
         pairPv.getFirst(),
         1E-8);
     assertEquals(
         "Sensitivity finite difference method: node sensitivity",
         sensiDiscMethod[loopnode],
         pairPv.second,
         deltaTolerancePrice);
   }
 }
 /**
  * The method calibrates a LMM on a set of vanilla swaption priced with SABR. The set of vanilla
  * swaptions is given by the CalibrationType. The curve sensitivities of the original swaption are
  * calculated with LMM re-calibration.
  *
  * @param swaption The swaption.
  * @param curves The curves and SABR data.
  * @return The present value curve sensitivities.
  */
 public InterestRateCurveSensitivity presentValueCurveSensitivity(
     final SwaptionPhysicalFixedIbor swaption, final SABRInterestRateDataBundle curves) {
   ArgumentChecker.notNull(swaption, "swaption");
   ArgumentChecker.notNull(curves, "curves");
   // TODO: Create a way to chose the LMM base parameters (displacement, mean reversion,
   // volatility).
   final LiborMarketModelDisplacedDiffusionParameters lmmParameters =
       LiborMarketModelDisplacedDiffusionParameters.from(
           swaption,
           DEFAULT_DISPLACEMENT,
           DEFAULT_MEAN_REVERSION,
           new VolatilityLMMAngle(DEFAULT_ANGLE, DEFAULT_DISPLACEMENT));
   final SwaptionPhysicalLMMDDSuccessiveRootFinderCalibrationObjective objective =
       new SwaptionPhysicalLMMDDSuccessiveRootFinderCalibrationObjective(lmmParameters);
   final SwaptionPhysicalLMMDDSuccessiveRootFinderCalibrationEngine calibrationEngine =
       new SwaptionPhysicalLMMDDSuccessiveRootFinderCalibrationEngine(objective);
   final SwaptionPhysicalFixedIbor[] swaptionCalibration =
       METHOD_BASKET.calibrationBasketFixedLegPeriod(swaption);
   calibrationEngine.addInstrument(swaptionCalibration, METHOD_SWAPTION_SABR);
   calibrationEngine.calibrate(curves);
   final LiborMarketModelDisplacedDiffusionDataBundle lmmBundle =
       new LiborMarketModelDisplacedDiffusionDataBundle(lmmParameters, curves);
   // Risks
   final int nbCal = swaptionCalibration.length;
   final int nbFact = lmmParameters.getNbFactor();
   final List<Integer> instrumentIndex = calibrationEngine.getInstrumentIndex();
   final double[] dPvAmdLambda = new double[nbCal];
   final double[][][] dPvCaldGamma = new double[nbCal][][];
   final double[][] dPvCaldLambda = new double[nbCal][nbCal];
   InterestRateCurveSensitivity pvcsCal =
       METHOD_SWAPTION_LMM.presentValueCurveSensitivity(swaption, lmmBundle);
   pvcsCal = pvcsCal.cleaned();
   final double[][] dPvAmdGamma =
       METHOD_SWAPTION_LMM.presentValueLMMSensitivity(swaption, lmmBundle);
   for (int loopcal = 0; loopcal < nbCal; loopcal++) {
     dPvCaldGamma[loopcal] =
         METHOD_SWAPTION_LMM.presentValueLMMSensitivity(swaptionCalibration[loopcal], lmmBundle);
   }
   // Multiplicative-factor sensitivity
   for (int loopcal = 0; loopcal < nbCal; loopcal++) {
     for (int loopperiod = instrumentIndex.get(loopcal);
         loopperiod < instrumentIndex.get(loopcal + 1);
         loopperiod++) {
       for (int loopfact = 0; loopfact < nbFact; loopfact++) {
         dPvAmdLambda[loopcal] +=
             dPvAmdGamma[loopperiod][loopfact]
                 * lmmParameters.getVolatility()[loopperiod][loopfact];
       }
     }
   }
   for (int loopcal1 = 0; loopcal1 < nbCal; loopcal1++) {
     for (int loopcal2 = 0; loopcal2 < nbCal; loopcal2++) {
       for (int loopperiod = instrumentIndex.get(loopcal2);
           loopperiod < instrumentIndex.get(loopcal2 + 1);
           loopperiod++) {
         for (int loopfact = 0; loopfact < nbFact; loopfact++) {
           dPvCaldLambda[loopcal1][loopcal2] +=
               dPvCaldGamma[loopcal1][loopperiod][loopfact]
                   * lmmParameters.getVolatility()[loopperiod][loopfact];
         }
       }
     }
   }
   final InterestRateCurveSensitivity[] pvcsCalBase = new InterestRateCurveSensitivity[nbCal];
   final InterestRateCurveSensitivity[] pvcsCalCal = new InterestRateCurveSensitivity[nbCal];
   final InterestRateCurveSensitivity[] pvcsCalDiff = new InterestRateCurveSensitivity[nbCal];
   for (int loopcal = 0; loopcal < nbCal; loopcal++) {
     pvcsCalBase[loopcal] =
         METHOD_SWAPTION_SABR.presentValueCurveSensitivity(swaptionCalibration[loopcal], curves);
     pvcsCalBase[loopcal] = pvcsCalBase[loopcal].cleaned();
     pvcsCalCal[loopcal] =
         METHOD_SWAPTION_LMM.presentValueCurveSensitivity(swaptionCalibration[loopcal], lmmBundle);
     pvcsCalCal[loopcal] = pvcsCalCal[loopcal].cleaned();
     pvcsCalDiff[loopcal] = pvcsCalBase[loopcal].plus(pvcsCalCal[loopcal].multipliedBy(-1));
     pvcsCalDiff[loopcal] = pvcsCalDiff[loopcal].cleaned();
   }
   final CommonsMatrixAlgebra matrix = new CommonsMatrixAlgebra();
   final DoubleMatrix2D dPvCaldLambdaMatrix = new DoubleMatrix2D(dPvCaldLambda);
   final DoubleMatrix2D dPvCaldLambdaMatrixInverse = matrix.getInverse(dPvCaldLambdaMatrix);
   // Curve sensitivity
   final InterestRateCurveSensitivity[] dLambdadC = new InterestRateCurveSensitivity[nbCal];
   for (int loopcal1 = 0; loopcal1 < nbCal; loopcal1++) {
     dLambdadC[loopcal1] = new InterestRateCurveSensitivity();
     for (int loopcal2 = 0; loopcal2 <= loopcal1; loopcal2++) {
       dLambdadC[loopcal1] =
           dLambdadC[loopcal1].plus(
               pvcsCalDiff[loopcal2].multipliedBy(
                   dPvCaldLambdaMatrixInverse.getEntry(loopcal1, loopcal2)));
     }
   }
   InterestRateCurveSensitivity pvcsAdjust = new InterestRateCurveSensitivity();
   for (int loopcal = 0; loopcal < nbCal; loopcal++) {
     pvcsAdjust = pvcsAdjust.plus(dLambdadC[loopcal].multipliedBy(dPvAmdLambda[loopcal]));
   }
   pvcsAdjust = pvcsAdjust.cleaned();
   InterestRateCurveSensitivity pvcsTot = pvcsCal.plus(pvcsAdjust);
   pvcsTot = pvcsTot.cleaned();
   return pvcsTot;
 }
 /**
  * The method calibrates a LMM on a set of vanilla swaption priced with SABR. The set of vanilla
  * swaptions is given by the CalibrationType. The curve and SABR sensitivities of the original
  * swaption are calculated with LMM re-calibration. Used mainly for performance test purposes as
  * the output is hybrid list.
  *
  * @param swaption The swaption.
  * @param curves The curves and SABR data.
  * @return The results (returned as a list of objects) [0] the present value, [1] the present
  *     curve sensitivity, [2] the present value SABR sensitivity.
  */
 public List<Object> presentValueCurveSABRSensitivity(
     final SwaptionPhysicalFixedIbor swaption, final SABRInterestRateDataBundle curves) {
   ArgumentChecker.notNull(swaption, "swaption");
   ArgumentChecker.notNull(curves, "curves");
   // TODO: Create a way to chose the LMM base parameters (displacement, mean reversion,
   // volatility).
   final LiborMarketModelDisplacedDiffusionParameters lmmParameters =
       LiborMarketModelDisplacedDiffusionParameters.from(
           swaption,
           DEFAULT_DISPLACEMENT,
           DEFAULT_MEAN_REVERSION,
           new VolatilityLMMAngle(DEFAULT_ANGLE, DEFAULT_DISPLACEMENT));
   final SwaptionPhysicalLMMDDSuccessiveRootFinderCalibrationObjective objective =
       new SwaptionPhysicalLMMDDSuccessiveRootFinderCalibrationObjective(lmmParameters);
   final SwaptionPhysicalLMMDDSuccessiveRootFinderCalibrationEngine calibrationEngine =
       new SwaptionPhysicalLMMDDSuccessiveRootFinderCalibrationEngine(objective);
   final SwaptionPhysicalFixedIbor[] swaptionCalibration =
       METHOD_BASKET.calibrationBasketFixedLegPeriod(swaption);
   calibrationEngine.addInstrument(swaptionCalibration, METHOD_SWAPTION_SABR);
   calibrationEngine.calibrate(curves);
   final LiborMarketModelDisplacedDiffusionDataBundle lmmBundle =
       new LiborMarketModelDisplacedDiffusionDataBundle(lmmParameters, curves);
   // Risks
   final int nbCal = swaptionCalibration.length;
   final int nbFact = lmmParameters.getNbFactor();
   final List<Integer> instrumentIndex = calibrationEngine.getInstrumentIndex();
   final double[] dPvAmdLambda = new double[nbCal];
   final double[][][] dPvCaldGamma = new double[nbCal][][];
   final double[][] dPvCaldLambda = new double[nbCal][nbCal];
   final PresentValueSABRSensitivityDataBundle[] dPvCaldSABR =
       new PresentValueSABRSensitivityDataBundle[nbCal];
   InterestRateCurveSensitivity pvcsCal =
       METHOD_SWAPTION_LMM.presentValueCurveSensitivity(swaption, lmmBundle);
   pvcsCal = pvcsCal.cleaned();
   final double[][] dPvAmdGamma =
       METHOD_SWAPTION_LMM.presentValueLMMSensitivity(swaption, lmmBundle);
   for (int loopcal = 0; loopcal < nbCal; loopcal++) {
     dPvCaldGamma[loopcal] =
         METHOD_SWAPTION_LMM.presentValueLMMSensitivity(swaptionCalibration[loopcal], lmmBundle);
   }
   // Multiplicative-factor sensitivity
   for (int loopcal = 0; loopcal < nbCal; loopcal++) {
     for (int loopperiod = instrumentIndex.get(loopcal);
         loopperiod < instrumentIndex.get(loopcal + 1);
         loopperiod++) {
       for (int loopfact = 0; loopfact < nbFact; loopfact++) {
         dPvAmdLambda[loopcal] +=
             dPvAmdGamma[loopperiod][loopfact]
                 * lmmParameters.getVolatility()[loopperiod][loopfact];
       }
     }
   }
   for (int loopcal1 = 0; loopcal1 < nbCal; loopcal1++) {
     for (int loopcal2 = 0; loopcal2 < nbCal; loopcal2++) {
       for (int loopperiod = instrumentIndex.get(loopcal2);
           loopperiod < instrumentIndex.get(loopcal2 + 1);
           loopperiod++) {
         for (int loopfact = 0; loopfact < nbFact; loopfact++) {
           dPvCaldLambda[loopcal1][loopcal2] +=
               dPvCaldGamma[loopcal1][loopperiod][loopfact]
                   * lmmParameters.getVolatility()[loopperiod][loopfact];
         }
       }
     }
   }
   final InterestRateCurveSensitivity[] pvcsCalBase = new InterestRateCurveSensitivity[nbCal];
   final InterestRateCurveSensitivity[] pvcsCalCal = new InterestRateCurveSensitivity[nbCal];
   final InterestRateCurveSensitivity[] pvcsCalDiff = new InterestRateCurveSensitivity[nbCal];
   for (int loopcal = 0; loopcal < nbCal; loopcal++) {
     pvcsCalBase[loopcal] =
         METHOD_SWAPTION_SABR.presentValueCurveSensitivity(swaptionCalibration[loopcal], curves);
     pvcsCalBase[loopcal] = pvcsCalBase[loopcal].cleaned();
     pvcsCalCal[loopcal] =
         METHOD_SWAPTION_LMM.presentValueCurveSensitivity(swaptionCalibration[loopcal], lmmBundle);
     pvcsCalCal[loopcal] = pvcsCalCal[loopcal].cleaned();
     pvcsCalDiff[loopcal] = pvcsCalBase[loopcal].plus(pvcsCalCal[loopcal].multipliedBy(-1));
     pvcsCalDiff[loopcal] = pvcsCalDiff[loopcal].cleaned();
   }
   final CommonsMatrixAlgebra matrix = new CommonsMatrixAlgebra();
   final DoubleMatrix2D dPvCaldLambdaMatrix = new DoubleMatrix2D(dPvCaldLambda);
   final DoubleMatrix2D dPvCaldLambdaMatrixInverse = matrix.getInverse(dPvCaldLambdaMatrix);
   // SABR sensitivity
   final double[][] dPvCaldAlpha = new double[nbCal][nbCal];
   final double[][] dPvCaldRho = new double[nbCal][nbCal];
   final double[][] dPvCaldNu = new double[nbCal][nbCal];
   for (int loopcal = 0; loopcal < nbCal; loopcal++) {
     dPvCaldSABR[loopcal] =
         METHOD_SWAPTION_SABR.presentValueSABRSensitivity(swaptionCalibration[loopcal], curves);
     final Set<DoublesPair> keySet = dPvCaldSABR[loopcal].getAlpha().getMap().keySet();
     final DoublesPair[] keys = keySet.toArray(new DoublesPair[keySet.size()]);
     dPvCaldAlpha[loopcal][loopcal] = dPvCaldSABR[loopcal].getAlpha().getMap().get(keys[0]);
     dPvCaldRho[loopcal][loopcal] = dPvCaldSABR[loopcal].getRho().getMap().get(keys[0]);
     dPvCaldNu[loopcal][loopcal] = dPvCaldSABR[loopcal].getNu().getMap().get(keys[0]);
   }
   final DoubleMatrix1D dPvAmdLambdaMatrix = new DoubleMatrix1D(dPvAmdLambda);
   final DoubleMatrix2D dPvCaldAlphaMatrix = new DoubleMatrix2D(dPvCaldAlpha);
   final DoubleMatrix2D dLambdadAlphaMatrix =
       (DoubleMatrix2D) matrix.multiply(dPvCaldLambdaMatrixInverse, dPvCaldAlphaMatrix);
   final DoubleMatrix2D dPvAmdAlphaMatrix =
       (DoubleMatrix2D)
           matrix.multiply(matrix.getTranspose(dLambdadAlphaMatrix), dPvAmdLambdaMatrix);
   final DoubleMatrix2D dPvCaldRhoMatrix = new DoubleMatrix2D(dPvCaldRho);
   final DoubleMatrix2D dLambdadRhoMatrix =
       (DoubleMatrix2D) matrix.multiply(dPvCaldLambdaMatrixInverse, dPvCaldRhoMatrix);
   final DoubleMatrix2D dPvAmdRhoMatrix =
       (DoubleMatrix2D)
           matrix.multiply(matrix.getTranspose(dLambdadRhoMatrix), dPvAmdLambdaMatrix);
   final DoubleMatrix2D dPvCaldNuMatrix = new DoubleMatrix2D(dPvCaldNu);
   final DoubleMatrix2D dLambdadNuMatrix =
       (DoubleMatrix2D) matrix.multiply(dPvCaldLambdaMatrixInverse, dPvCaldNuMatrix);
   final DoubleMatrix2D dPvAmdNuMatrix =
       (DoubleMatrix2D) matrix.multiply(matrix.getTranspose(dLambdadNuMatrix), dPvAmdLambdaMatrix);
   final double[] dPvAmdAlpha = matrix.getTranspose(dPvAmdAlphaMatrix).getData()[0];
   final double[] dPvAmdRho = matrix.getTranspose(dPvAmdRhoMatrix).getData()[0];
   final double[] dPvAmdNu = matrix.getTranspose(dPvAmdNuMatrix).getData()[0];
   // Storage in PresentValueSABRSensitivityDataBundle
   final PresentValueSABRSensitivityDataBundle pvss = new PresentValueSABRSensitivityDataBundle();
   for (int loopcal = 0; loopcal < nbCal; loopcal++) {
     final DoublesPair expiryMaturity =
         DoublesPair.of(
             swaptionCalibration[loopcal].getTimeToExpiry(),
             swaptionCalibration[loopcal].getMaturityTime());
     pvss.addAlpha(expiryMaturity, dPvAmdAlpha[loopcal]);
     pvss.addRho(expiryMaturity, dPvAmdRho[loopcal]);
     pvss.addNu(expiryMaturity, dPvAmdNu[loopcal]);
   }
   // Curve sensitivity
   final InterestRateCurveSensitivity[] dLambdadC = new InterestRateCurveSensitivity[nbCal];
   for (int loopcal1 = 0; loopcal1 < nbCal; loopcal1++) {
     dLambdadC[loopcal1] = new InterestRateCurveSensitivity();
     for (int loopcal2 = 0; loopcal2 <= loopcal1; loopcal2++) {
       dLambdadC[loopcal1] =
           dLambdadC[loopcal1].plus(
               pvcsCalDiff[loopcal2].multipliedBy(
                   dPvCaldLambdaMatrixInverse.getEntry(loopcal1, loopcal2)));
     }
   }
   InterestRateCurveSensitivity pvcs = new InterestRateCurveSensitivity();
   for (int loopcal = 0; loopcal < nbCal; loopcal++) {
     pvcs = pvcs.plus(dLambdadC[loopcal].multipliedBy(dPvAmdLambda[loopcal]));
   }
   pvcs = pvcs.plus(pvcsCal);
   pvcs = pvcs.cleaned();
   final List<Object> results = new ArrayList<>();
   results.add(
       CurrencyAmount.of(
           swaption.getCurrency(),
           METHOD_SWAPTION_LMM.presentValue(swaption, lmmBundle).getAmount()));
   results.add(pvcs);
   results.add(pvss);
   return results;
 }
 @Test
 /**
  * Test the present value rate sensitivity against a finite difference computation; strike above
  * the cut-off strike. Test sensitivity long/short parity.
  */
 public void testPresentValueSensitivityAboveCutOff() {
   final YieldCurveBundle curves = TestsDataSetsSABR.createCurves1();
   final SABRInterestRateParameters sabrParameter = TestsDataSetsSABR.createSABR1();
   final SABRInterestRateDataBundle sabrBundle =
       new SABRInterestRateDataBundle(sabrParameter, curves);
   InterestRateCurveSensitivity pvsCapLong =
       METHOD.presentValueSensitivity(CAP_HIGH_LONG, sabrBundle);
   final InterestRateCurveSensitivity pvsCapShort =
       METHOD.presentValueSensitivity(CAP_HIGH_SHORT, sabrBundle);
   // Long/short parity
   final InterestRateCurveSensitivity pvsCapShort_1 = pvsCapShort.multipliedBy(-1);
   assertEquals(pvsCapLong.getSensitivities(), pvsCapShort_1.getSensitivities());
   // Present value sensitivity comparison with finite difference.
   final double deltaTolerancePrice = 1.0E-1;
   // Testing note: Sensitivity is for a movement of 1. 1E+2 = 1 cent for a 1 bp move.
   final double deltaShift = 1.0E-7;
   pvsCapLong = pvsCapLong.cleaned();
   final String bumpedCurveName = "Bumped Curve";
   // 1. Forward curve sensitivity
   final String[] CurveNameBumpedForward = {FUNDING_CURVE_NAME, bumpedCurveName};
   final CapFloorIbor capBumpedForward =
       (CapFloorIbor)
           CAP_HIGH_LONG_DEFINITION.toDerivative(REFERENCE_DATE, CurveNameBumpedForward);
   final double[] nodeTimesForward =
       new double[] {
         capBumpedForward.getFixingPeriodStartTime(), capBumpedForward.getFixingPeriodEndTime()
       };
   final double[] sensiForwardMethod =
       SensitivityFiniteDifference.curveSensitivity(
           capBumpedForward,
           SABR_BUNDLE,
           FORWARD_CURVE_NAME,
           bumpedCurveName,
           nodeTimesForward,
           deltaShift,
           METHOD);
   assertEquals(
       "Sensitivity finite difference method: number of node", 2, sensiForwardMethod.length);
   final List<DoublesPair> sensiPvForward = pvsCapLong.getSensitivities().get(FORWARD_CURVE_NAME);
   for (int loopnode = 0; loopnode < sensiForwardMethod.length; loopnode++) {
     final DoublesPair pairPv = sensiPvForward.get(loopnode);
     assertEquals(
         "Sensitivity cap/floor pv to forward curve: Node " + loopnode,
         nodeTimesForward[loopnode],
         pairPv.getFirst(),
         1E-8);
     //      assertEquals("Sensitivity finite difference method: node sensitivity: Node " +
     // loopnode, pairPv.second, sensiForwardMethod[loopnode], deltaTolerancePrice);
   }
   // 2. Discounting curve sensitivity
   final String[] CurveNameBumpedDisc = {bumpedCurveName, FORWARD_CURVE_NAME};
   final CapFloorIbor capBumpedDisc =
       (CapFloorIbor) CAP_HIGH_LONG_DEFINITION.toDerivative(REFERENCE_DATE, CurveNameBumpedDisc);
   final double[] nodeTimesDisc = new double[] {capBumpedDisc.getPaymentTime()};
   final double[] sensiDiscMethod =
       SensitivityFiniteDifference.curveSensitivity(
           capBumpedDisc,
           SABR_BUNDLE,
           FUNDING_CURVE_NAME,
           bumpedCurveName,
           nodeTimesDisc,
           deltaShift,
           METHOD);
   assertEquals("Sensitivity finite difference method: number of node", 1, sensiDiscMethod.length);
   final List<DoublesPair> sensiPvDisc = pvsCapLong.getSensitivities().get(FUNDING_CURVE_NAME);
   for (int loopnode = 0; loopnode < sensiDiscMethod.length; loopnode++) {
     final DoublesPair pairPv = sensiPvDisc.get(loopnode);
     assertEquals(
         "Sensitivity cap/floor pv to forward curve: Node " + loopnode,
         nodeTimesDisc[loopnode],
         pairPv.getFirst(),
         1E-8);
     assertEquals(
         "Sensitivity finite difference method: node sensitivity",
         pairPv.second,
         sensiDiscMethod[loopnode],
         deltaTolerancePrice);
   }
 }