private boolean isFusableControlStatement(Node n) { switch (n.getToken()) { case IF: case THROW: case SWITCH: case EXPR_RESULT: return true; case RETURN: // We don't want to add a new return value. return n.hasChildren(); case FOR: if (NodeUtil.isForIn(n)) { // Avoid cases where we have for(var x = foo() in a) { .... return !mayHaveSideEffects(n.getFirstChild()); } else { // Avoid cases where we have for(var x;_;_) { .... return !n.getFirstChild().isVar(); } case LABEL: return isFusableControlStatement(n.getLastChild()); case BLOCK: return !n.isSyntheticBlock() && isFusableControlStatement(n.getFirstChild()); default: break; } return false; }
public void testLinenoCharnoObjectLiteral() throws Exception { Node n = parse("\n\n var a = {a:0\n,b :1};").getFirstChild().getFirstChild().getFirstChild(); assertEquals(Token.OBJECTLIT, n.getType()); assertEquals(3, n.getLineno()); assertEquals(9, n.getCharno()); Node key = n.getFirstChild(); assertEquals(Token.STRING_KEY, key.getType()); assertEquals(3, key.getLineno()); assertEquals(10, key.getCharno()); Node value = key.getFirstChild(); assertEquals(Token.NUMBER, value.getType()); assertEquals(3, value.getLineno()); assertEquals(12, value.getCharno()); key = key.getNext(); assertEquals(Token.STRING_KEY, key.getType()); assertEquals(4, key.getLineno()); assertEquals(1, key.getCharno()); value = key.getFirstChild(); assertEquals(Token.NUMBER, value.getType()); assertEquals(4, value.getLineno()); assertEquals(4, value.getCharno()); }
private void handleContinue(Node node) { String label = null; if (node.hasChildren()) { label = node.getFirstChild().getString(); } Node cur; Node lastJump; // Similar to handBreak's logic with a few minor variation. Node parent = node.getParent(); for (cur = node, lastJump = node; !isContinueTarget(cur, parent, label); cur = parent, parent = parent.getParent()) { if (cur.getType() == Token.TRY && NodeUtil.hasFinally(cur)) { if (lastJump == node) { createEdge(lastJump, Branch.UNCOND, cur.getLastChild()); } else { finallyMap.put(lastJump, computeFallThrough(cur.getLastChild())); } lastJump = cur; } Preconditions.checkState(parent != null, "Cannot find continue target."); } Node iter = cur; if (cur.getChildCount() == 4) { iter = cur.getFirstChild().getNext().getNext(); } if (lastJump == node) { createEdge(node, Branch.UNCOND, iter); } else { finallyMap.put(lastJump, iter); } }
/** * If we haven't found a return value yet, try to look at the "return" statements in the function. */ FunctionTypeBuilder inferReturnStatementsAsLastResort(@Nullable Node functionBlock) { if (functionBlock == null || compiler.getInput(sourceName).isExtern()) { return this; } Preconditions.checkArgument(functionBlock.getType() == Token.BLOCK); if (returnType == null) { boolean hasNonEmptyReturns = false; List<Node> worklist = Lists.newArrayList(functionBlock); while (!worklist.isEmpty()) { Node current = worklist.remove(worklist.size() - 1); int cType = current.getType(); if (cType == Token.RETURN && current.getFirstChild() != null || cType == Token.THROW) { hasNonEmptyReturns = true; break; } else if (NodeUtil.isStatementBlock(current) || NodeUtil.isControlStructure(current)) { for (Node child = current.getFirstChild(); child != null; child = child.getNext()) { worklist.add(child); } } } if (!hasNonEmptyReturns) { returnType = typeRegistry.getNativeType(VOID_TYPE); returnTypeInferred = true; } } return this; }
private void scanRoot(Node n) { if (n.isFunction()) { if (inputId == null) { inputId = NodeUtil.getInputId(n); // TODO(johnlenz): inputId maybe null if the FUNCTION node is detached // from the AST. // Is it meaningful to build a scope for detached FUNCTION node? } final Node fnNameNode = n.getFirstChild(); final Node args = fnNameNode.getNext(); final Node body = args.getNext(); // Bleed the function name into the scope, if it hasn't // been declared in the outer scope. String fnName = fnNameNode.getString(); if (!fnName.isEmpty() && NodeUtil.isFunctionExpression(n)) { declareVar(fnNameNode); } // Args: Declare function variables Preconditions.checkState(args.isParamList()); for (Node a = args.getFirstChild(); a != null; a = a.getNext()) { Preconditions.checkState(a.isName()); declareVar(a); } // Body scanVars(body); } else { // It's the global block Preconditions.checkState(scope.getParent() == null); scanVars(n); } }
private void validateTry(Node n) { validateNodeType(Token.TRY, n); validateChildCountIn(n, 2, 3); validateBlock(n.getFirstChild()); boolean seenCatchOrFinally = false; // Validate catch Node catches = n.getChildAtIndex(1); validateNodeType(Token.BLOCK, catches); validateMaximumChildCount(catches, 1); if (catches.hasChildren()) { validateCatch(catches.getFirstChild()); seenCatchOrFinally = true; } // Validate finally if (n.getChildCount() == 3) { validateBlock(n.getLastChild()); seenCatchOrFinally = true; } if (!seenCatchOrFinally) { violation("Missing catch or finally for try statement.", n); } }
public void testFileOverviewJSDoc1() { Node n = parse("/** @fileoverview Hi mom! */ function Foo() {}"); assertEquals(Token.FUNCTION, n.getFirstChild().getType()); assertTrue(n.getJSDocInfo() != null); assertNull(n.getFirstChild().getJSDocInfo()); assertEquals("Hi mom!", n.getJSDocInfo().getFileOverview()); }
/** If this is an assign to a variable or its property, return it. Otherwise, return null. */ static Assign maybeCreateAssign(Node assignNode) { Preconditions.checkState(NodeUtil.isAssignmentOp(assignNode)); // Skip one level of GETPROPs or GETELEMs. // // Don't skip more than one level, because then we get into // situations where assigns to properties of properties will always // trigger side-effects, and the variable they're on cannot be removed. boolean isPropAssign = false; Node current = assignNode.getFirstChild(); if (NodeUtil.isGet(current)) { current = current.getFirstChild(); isPropAssign = true; if (current.getType() == Token.GETPROP && current.getLastChild().getString().equals("prototype")) { // Prototype properties sets should be considered like normal // property sets. current = current.getFirstChild(); } } if (current.getType() == Token.NAME) { return new Assign(assignNode, current, isPropAssign); } return null; }
/** @return Whether the name is used in a way that might be a candidate for inlining. */ static boolean isCandidateUsage(Node name) { Node parent = name.getParent(); Preconditions.checkState(name.isName()); if (parent.isVar() || parent.isFunction()) { // This is a declaration. Duplicate declarations are handle during // function candidate gathering. return true; } if (parent.isCall() && parent.getFirstChild() == name) { // This is a normal reference to the function. return true; } // Check for a ".call" to the named function: // CALL // GETPROP/GETELEM // NAME // STRING == "call" // This-Value // Function-parameter-1 // ... if (NodeUtil.isGet(parent) && name == parent.getFirstChild() && name.getNext().isString() && name.getNext().getString().equals("call")) { Node gramps = name.getAncestor(2); if (gramps.isCall() && gramps.getFirstChild() == parent) { // Yep, a ".call". return true; } } return false; }
private void scanRoot(Node n, Scope parent) { if (n.getType() == Token.FUNCTION) { sourceName = (String) n.getProp(Node.SOURCENAME_PROP); final Node fnNameNode = n.getFirstChild(); final Node args = fnNameNode.getNext(); final Node body = args.getNext(); // Bleed the function name into the scope, if it hasn't // been declared in the outer scope. String fnName = fnNameNode.getString(); if (!fnName.isEmpty() && NodeUtil.isFunctionExpression(n)) { declareVar(fnName, fnNameNode, n, null, null, n); } // Args: Declare function variables Preconditions.checkState(args.getType() == Token.LP); for (Node a = args.getFirstChild(); a != null; a = a.getNext()) { Preconditions.checkState(a.getType() == Token.NAME); declareVar(a.getString(), a, args, n, null, n); } // Body scanVars(body, n); } else { // It's the global block Preconditions.checkState(scope.getParent() == null); scanVars(n, null); } }
/** * Gets whether a node is a CALL node whose return value should be stripped. A call's return * value should be stripped if the function getting called is a static method in a class that * gets stripped. For example, if "goog.debug.Logger" is a strip name, then this function * returns true for a call such as "goog.debug.Logger.getLogger(...)". It may also simply be a * function that is getting stripped. For example, if "getLogger" is a strip name, but not * "goog.debug.Logger", this will still return true. * * @param n A node (typically a CALL node) * @return Whether the call's return value should be stripped */ boolean isCallWhoseReturnValueShouldBeStripped(@Nullable Node n) { return n != null && (n.getType() == Token.CALL || n.getType() == Token.NEW) && n.hasChildren() && (qualifiedNameBeginsWithStripType(n.getFirstChild()) || nameEndsWithFieldNameToStrip(n.getFirstChild())); }
public void findNamedFunctions(NodeTraversal t, Node n, Node parent) { if (!NodeUtil.isStatement(n)) { // There aren't any interesting functions here. return; } switch (n.getType()) { // Functions expressions in the form of: // var fooFn = function(x) { return ... } case Token.VAR: Preconditions.checkState(n.hasOneChild()); Node nameNode = n.getFirstChild(); if (nameNode.isName() && nameNode.hasChildren() && nameNode.getFirstChild().isFunction()) { maybeAddFunction(new FunctionVar(n), t.getModule()); } break; // Named functions // function Foo(x) { return ... } case Token.FUNCTION: Preconditions.checkState(NodeUtil.isStatementBlock(parent) || parent.isLabel()); if (!NodeUtil.isFunctionExpression(n)) { Function fn = new NamedFunction(n); maybeAddFunction(fn, t.getModule()); } break; } }
private boolean matchesNodeShape(Node template, Node ast) { if (isTemplateParameterNode(template)) { // Match the entire expression but only if it is an expression. return !NodeUtil.isStatement(ast); } else if (isTemplateLocalNameNode(template)) { // Match any name. Maybe match locals here. if (!ast.isName()) { return false; } } else if (template.isCall()) { // Loosely match CALL nodes. isEquivalentToShallow checks free calls against non-free calls, // but the template should ignore that distinction. if (ast == null || !ast.isCall() || ast.getChildCount() != template.getChildCount()) { return false; } // But check any children. } else if (!template.isEquivalentToShallow(ast)) { return false; } // isEquivalentToShallow guarantees the child counts match Node templateChild = template.getFirstChild(); Node astChild = ast.getFirstChild(); while (templateChild != null) { if (!matchesNodeShape(templateChild, astChild)) { return false; } templateChild = templateChild.getNext(); astChild = astChild.getNext(); } return true; }
/** * @param name The Name whose properties references should be updated. * @param value The value to use when rewriting. * @param depth The chain depth. * @param newNodes Expression nodes that have been updated. */ private static void rewriteAliasProps(Name name, Node value, int depth, Set<AstChange> newNodes) { if (name.props == null) { return; } Preconditions.checkState(!value.matchesQualifiedName(name.getFullName())); for (Name prop : name.props) { rewriteAliasProps(prop, value, depth + 1, newNodes); List<Ref> refs = new ArrayList<>(prop.getRefs()); for (Ref ref : refs) { Node target = ref.node; for (int i = 0; i <= depth; i++) { if (target.isGetProp()) { target = target.getFirstChild(); } else if (NodeUtil.isObjectLitKey(target)) { // Object literal key definitions are a little trickier, as we // need to find the assignment target Node gparent = target.getParent().getParent(); if (gparent.isAssign()) { target = gparent.getFirstChild(); } else { Preconditions.checkState(NodeUtil.isObjectLitKey(gparent)); target = gparent; } } else { throw new IllegalStateException("unexpected: " + target); } } Preconditions.checkState(target.isGetProp() || target.isName()); target.getParent().replaceChild(target, value.cloneTree()); prop.removeRef(ref); // Rescan the expression root. newNodes.add(new AstChange(ref.module, ref.scope, ref.node)); } } }
private void normalizeObjectLiteralAnnotations(Node objlit) { Preconditions.checkState(objlit.isObjectLit()); for (Node key = objlit.getFirstChild(); key != null; key = key.getNext()) { Node value = key.getFirstChild(); normalizeObjectLiteralKeyAnnotations(objlit, key, value); } }
/** * Prepare an template AST to use when performing matches. * * @param templateFunctionNode The template declaration function to extract the template AST from. * @return The first node of the template AST sequence to use when matching. */ private Node initTemplate(Node templateFunctionNode) { Node prepped = templateFunctionNode.cloneTree(); prepTemplatePlaceholders(prepped); Node body = prepped.getLastChild(); Node startNode; if (body.hasOneChild() && body.getFirstChild().isExprResult()) { // When matching an expression, don't require it to be a complete // statement. startNode = body.getFirstFirstChild(); } else { startNode = body.getFirstChild(); } for (int i = 0; i < templateLocals.size(); i++) { // reserve space in the locals array. this.localVarMatches.add(null); } for (int i = 0; i < templateParams.size(); i++) { // reserve space in the params array. this.paramNodeMatches.add(null); } return startNode; }
private void addExportMethod( Map<String, GenerateNodeContext> exports, String export, GenerateNodeContext context) { CodingConvention convention = compiler.getCodingConvention(); // Emit the proper CALL expression. // This is an optimization to avoid exporting everything as a symbol // because exporting a property is significantly simpler/faster. // Only export the property if the parent is being exported or // if the parent is "prototype" and the grandparent is being exported. String parent = null; String grandparent = null; Node node = context.getNode().getFirstChild(); if (node.isGetProp()) { Node parentNode = node.getFirstChild(); parent = parentNode.getQualifiedName(); if (parentNode.isGetProp() && parentNode.getLastChild().getString().equals(PROTOTYPE_PROPERTY)) { grandparent = parentNode.getFirstChild().getQualifiedName(); } } boolean useExportSymbol = true; if (grandparent != null && exports.containsKey(grandparent)) { // grandparent is only set for properties exported off a prototype obj. useExportSymbol = false; } else if (parent != null && exports.containsKey(parent)) { useExportSymbol = false; } Node call; if (useExportSymbol) { // exportSymbol(publicPath, object); call = IR.call( NodeUtil.newQualifiedNameNode( convention, exportSymbolFunction, context.getNode(), export), IR.string(export), NodeUtil.newQualifiedNameNode(convention, export, context.getNode(), export)); } else { // exportProperty(object, publicName, symbol); String property = getPropertyName(node); call = IR.call( NodeUtil.newQualifiedNameNode( convention, exportPropertyFunction, context.getNode(), exportPropertyFunction), NodeUtil.newQualifiedNameNode( convention, parent, context.getNode(), exportPropertyFunction), IR.string(property), NodeUtil.newQualifiedNameNode( convention, export, context.getNode(), exportPropertyFunction)); } Node expression = IR.exprResult(call); annotate(expression); addStatement(context, expression); compiler.reportCodeChange(); }
static ClassDeclarationMetadata create(Node classNode, Node parent) { Node classNameNode = classNode.getFirstChild(); Node superClassNameNode = classNameNode.getNext(); // If this is a class statement, or a class expression in a simple // assignment or var statement, convert it. In any other case, the // code is too dynamic, so return null. if (NodeUtil.isStatement(classNode)) { return new ClassDeclarationMetadata( classNode, classNameNode.getString(), false, classNameNode, superClassNameNode); } else if (parent.isAssign() && parent.getParent().isExprResult()) { // Add members after the EXPR_RESULT node: // example.C = class {}; example.C.prototype.foo = function() {}; String fullClassName = parent.getFirstChild().getQualifiedName(); if (fullClassName == null) { return null; } return new ClassDeclarationMetadata( parent.getParent(), fullClassName, true, classNameNode, superClassNameNode); } else if (parent.isName()) { // Add members after the 'var' statement. // var C = class {}; C.prototype.foo = function() {}; return new ClassDeclarationMetadata( parent.getParent(), parent.getString(), true, classNameNode, superClassNameNode); } else { // Cannot handle this class declaration. return null; } }
/** Replace the current assign with its right hand side. */ void remove() { Node parent = assignNode.getParent(); if (mayHaveSecondarySideEffects) { Node replacement = assignNode.getLastChild().detachFromParent(); // Aggregate any expressions in GETELEMs. for (Node current = assignNode.getFirstChild(); current.getType() != Token.NAME; current = current.getFirstChild()) { if (current.getType() == Token.GETELEM) { replacement = new Node(Token.COMMA, current.getLastChild().detachFromParent(), replacement); replacement.copyInformationFrom(current); } } parent.replaceChild(assignNode, replacement); } else { Node gramps = parent.getParent(); if (parent.getType() == Token.EXPR_RESULT) { gramps.removeChild(parent); } else { parent.replaceChild(assignNode, assignNode.getLastChild().detachFromParent()); } } }
private void validateImport(Node n) { validateEs6Feature("import statement", n); validateNodeType(Token.IMPORT, n); validateChildCount(n); if (n.getFirstChild().isName()) { validateName(n.getFirstChild()); } else { validateNodeType(Token.EMPTY, n.getFirstChild()); } Node secondChild = n.getChildAtIndex(1); switch (secondChild.getType()) { case Token.IMPORT_SPECS: validateImportSpecifiers(secondChild); break; case Token.IMPORT_STAR: validateNonEmptyString(secondChild); break; default: validateNodeType(Token.EMPTY, secondChild); } validateString(n.getChildAtIndex(2)); }
/** * Duplicates the PolymerElement externs with a different element base class if needed. For * example, if the base class is HTMLInputElement, then a class PolymerInputElement will be added. * If the element does not extend a native HTML element, this method is a no-op. */ private void appendPolymerElementExterns(final ClassDefinition cls) { if (!nativeExternsAdded.add(cls.nativeBaseElement)) { return; } Node block = IR.block(); Node baseExterns = polymerElementExterns.cloneTree(); String polymerElementType = getPolymerElementType(cls); baseExterns.getFirstChild().setString(polymerElementType); String elementType = tagNameMap.get(cls.nativeBaseElement); JSTypeExpression elementBaseType = new JSTypeExpression(new Node(Token.BANG, IR.string(elementType)), VIRTUAL_FILE); JSDocInfoBuilder baseDocs = JSDocInfoBuilder.copyFrom(baseExterns.getJSDocInfo()); baseDocs.changeBaseType(elementBaseType); baseExterns.setJSDocInfo(baseDocs.build()); block.addChildToBack(baseExterns); for (Node baseProp : polymerElementProps) { Node newProp = baseProp.cloneTree(); Node newPropRootName = NodeUtil.getRootOfQualifiedName(newProp.getFirstChild().getFirstChild()); newPropRootName.setString(polymerElementType); block.addChildToBack(newProp); } Node parent = polymerElementExterns.getParent(); Node stmts = block.removeChildren(); parent.addChildrenAfter(stmts, polymerElementExterns); compiler.reportCodeChange(); }
/** * @return Whether the node is an expression result of an assignment to a property of * PolymerElement. */ private boolean isPolymerElementPropExpr(Node value) { return value != null && value.isExprResult() && value.getFirstChild().getFirstChild().isGetProp() && NodeUtil.getRootOfQualifiedName(value.getFirstChild().getFirstChild()) .matchesQualifiedName(POLYMER_ELEMENT_NAME); }
@Override public void visit(NodeTraversal t, Node n, Node parent) { switch (n.getType()) { // Function calls case Token.CALL: Node child = n.getFirstChild(); String name = null; // NOTE: The normalization pass insures that local names do not // collide with global names. if (child.isName()) { name = child.getString(); } else if (child.isFunction()) { name = anonFunctionMap.get(child); } else if (NodeUtil.isFunctionObjectCall(n)) { Preconditions.checkState(NodeUtil.isGet(child)); Node fnIdentifingNode = child.getFirstChild(); if (fnIdentifingNode.isName()) { name = fnIdentifingNode.getString(); } else if (fnIdentifingNode.isFunction()) { name = anonFunctionMap.get(fnIdentifingNode); } } if (name != null) { FunctionState fs = functionMap.get(name); // Only visit call-sites for functions that can be inlined. if (fs != null) { callback.visitCallSite(t, n, fs); } } break; } }
private void handleFor(Node forNode) { if (forNode.getChildCount() == 4) { // We have for (init; cond; iter) { body } Node init = forNode.getFirstChild(); Node cond = init.getNext(); Node iter = cond.getNext(); Node body = iter.getNext(); // After initialization, we transfer to the FOR which is in charge of // checking the condition (for the first time). createEdge(init, Branch.UNCOND, forNode); // The edge that transfer control to the beginning of the loop body. createEdge(forNode, Branch.ON_TRUE, computeFallThrough(body)); // The edge to end of the loop. createEdge(forNode, Branch.ON_FALSE, computeFollowNode(forNode)); // The end of the body will have a unconditional branch to our iter // (handled by calling computeFollowNode of the last instruction of the // body. Our iter will jump to the forNode again to another condition // check. createEdge(iter, Branch.UNCOND, forNode); connectToPossibleExceptionHandler(init, init); connectToPossibleExceptionHandler(forNode, cond); connectToPossibleExceptionHandler(iter, iter); } else { // We have for (item in collection) { body } Node item = forNode.getFirstChild(); Node collection = item.getNext(); Node body = collection.getNext(); // The edge that transfer control to the beginning of the loop body. createEdge(forNode, Branch.ON_TRUE, computeFallThrough(body)); // The edge to end of the loop. createEdge(forNode, Branch.ON_FALSE, computeFollowNode(forNode)); connectToPossibleExceptionHandler(forNode, collection); } }
/** Checks that variables, functions, and arguments are not deleted. */ private static void checkDelete(NodeTraversal t, Node n) { if (n.getFirstChild().isName()) { Var v = t.getScope().getVar(n.getFirstChild().getString()); if (v != null) { t.report(n, DELETE_VARIABLE); } } }
public void testFileOverviewJSDoc2() { Node n = parse("/** @fileoverview Hi mom! */ " + "/** @constructor */ function Foo() {}"); assertTrue(n.getJSDocInfo() != null); assertEquals("Hi mom!", n.getJSDocInfo().getFileOverview()); assertTrue(n.getFirstChild().getJSDocInfo() != null); assertFalse(n.getFirstChild().getJSDocInfo().hasFileOverview()); assertTrue(n.getFirstChild().getJSDocInfo().isConstructor()); }
@Override public void visit(NodeTraversal t, Node n, Node parent) { if (!n.isAssign() || n.getFirstChild() == className) { return; } if (className.matchesQualifiedName(n.getFirstChild())) { compiler.report(JSError.make(n, CLASS_REASSIGNMENT)); } }
/** * Determines whether a function can be inlined at a particular call site. There are several * criteria that the function and reference must hold in order for the functions to be inlined: 1) * If a call's arguments have side effects, the corresponding argument in the function must only * be referenced once. For instance, this will not be inlined: * * <pre> * function foo(a) { return a + a } * x = foo(i++); * </pre> */ private CanInlineResult canInlineReferenceDirectly(Node callNode, Node fnNode) { if (!isDirectCallNodeReplacementPossible(fnNode)) { return CanInlineResult.NO; } Node block = fnNode.getLastChild(); // CALL NODE: [ NAME, ARG1, ARG2, ... ] Node cArg = callNode.getFirstChild().getNext(); // Functions called via 'call' and 'apply' have a this-object as // the first parameter, but this is not part of the called function's // parameter list. if (callNode.getFirstChild().getType() != Token.NAME) { if (NodeUtil.isFunctionObjectCall(callNode)) { // TODO(johnlenz): Support replace this with a value. Preconditions.checkNotNull(cArg); Preconditions.checkState(cArg.getType() == Token.THIS); cArg = cArg.getNext(); } else { // ".apply" call should be filtered before this. Preconditions.checkState(!NodeUtil.isFunctionObjectApply(callNode)); } } // FUNCTION NODE -> LP NODE: [ ARG1, ARG2, ... ] Node fnParam = NodeUtil.getFnParameters(fnNode).getFirstChild(); while (cArg != null || fnParam != null) { // For each named parameter check if a mutable argument use more than one. if (fnParam != null) { if (cArg != null) { // Check for arguments that are evaluated more than once. // Note: Unlike block inlining, there it is not possible that a // parameter reference will be in a loop. if (NodeUtil.mayEffectMutableState(cArg) && NodeUtil.getNameReferenceCount(block, fnParam.getString()) > 1) { return CanInlineResult.NO; } } // Move to the next name. fnParam = fnParam.getNext(); } // For every call argument check for side-effects, even if there // isn't a named parameter to match. if (cArg != null) { if (NodeUtil.mayHaveSideEffects(cArg)) { return CanInlineResult.NO; } cArg = cArg.getNext(); } } return CanInlineResult.YES; }
boolean isLvalue() { Node parent = getParent(); int parentType = parent.getType(); return (parentType == Token.VAR && nameNode.getFirstChild() != null) || parentType == Token.INC || parentType == Token.DEC || (NodeUtil.isAssignmentOp(parent) && parent.getFirstChild() == nameNode) || isLhsOfForInExpression(nameNode); }
public void testObjectLiteralDoc1() { Node n = parse("var x = {/** @type {number} */ 1: 2};"); Node objectLit = n.getFirstChild().getFirstChild().getFirstChild(); assertEquals(Token.OBJECTLIT, objectLit.getType()); Node number = objectLit.getFirstChild(); assertEquals(Token.STRING_KEY, number.getType()); assertNotNull(number.getJSDocInfo()); }