@Override public void recordInterfaces( JSType type, JSType relatedType, DisambiguateProperties<JSType>.Property p) { ObjectType objType = ObjectType.cast(type); if (objType != null) { FunctionType constructor; if (objType instanceof FunctionType) { constructor = (FunctionType) objType; } else if (objType instanceof FunctionPrototypeType) { constructor = ((FunctionPrototypeType) objType).getOwnerFunction(); } else { constructor = objType.getConstructor(); } while (constructor != null) { for (ObjectType itype : constructor.getImplementedInterfaces()) { JSType top = getTypeWithProperty(p.name, itype); if (top != null) { p.addType(itype, top, relatedType); } else { recordInterfaces(itype, relatedType, p); } // If this interface invalidated this property, return now. if (p.skipRenaming) return; } if (constructor.isInterface() || constructor.isConstructor()) { constructor = constructor.getSuperClassConstructor(); } else { constructor = null; } } } }
/** * Two function types are equal if their signatures match. Since they don't have signatures, two * interfaces are equal if their names match. */ boolean checkFunctionEquivalenceHelper(FunctionType that, EquivalenceMethod eqMethod) { if (isConstructor()) { if (that.isConstructor()) { return this == that; } return false; } if (isInterface()) { if (that.isInterface()) { return getReferenceName().equals(that.getReferenceName()); } return false; } if (that.isInterface()) { return false; } return typeOfThis.checkEquivalenceHelper(that.typeOfThis, eqMethod) && call.checkArrowEquivalenceHelper(that.call, eqMethod); }
@Override public JSType getInstanceFromPrototype(JSType type) { if (type.isFunctionPrototypeType()) { FunctionPrototypeType prototype = (FunctionPrototypeType) type; FunctionType owner = prototype.getOwnerFunction(); if (owner.isConstructor() || owner.isInterface()) { return ((FunctionPrototypeType) type).getOwnerFunction().getInstanceType(); } } return null; }
@Override public boolean isSubtype(JSType that) { if (JSType.isSubtypeHelper(this, that)) { return true; } // Union types if (that.isUnionType()) { // The static {@code JSType.isSubtype} check already decomposed // union types, so we don't need to check those again. return false; } // record types if (that.isRecordType()) { return RecordType.isSubtype(this, that.toMaybeRecordType()); } // Interfaces // Find all the interfaces implemented by this class and compare each one // to the interface instance. ObjectType thatObj = that.toObjectType(); FunctionType thatCtor = thatObj == null ? null : thatObj.getConstructor(); if (getConstructor() != null && getConstructor().isInterface()) { for (ObjectType thisInterface : getCtorExtendedInterfaces()) { if (thisInterface.isSubtype(that)) { return true; } } } else if (thatCtor != null && thatCtor.isInterface()) { Iterable<ObjectType> thisInterfaces = getCtorImplementedInterfaces(); for (ObjectType thisInterface : thisInterfaces) { if (thisInterface.isSubtype(that)) { return true; } } } // other prototype based objects if (isUnknownType() || implicitPrototypeChainIsUnknown()) { // If unsure, say 'yes', to avoid spurious warnings. // TODO(user): resolve the prototype chain completely in all cases, // to avoid guessing. return true; } return thatObj != null && isImplicitPrototype(thatObj); }
private void addRelatedInterfaces(ObjectType instance, Set<ObjectType> set) { FunctionType constructor = instance.getConstructor(); if (constructor != null) { if (!constructor.isInterface()) { return; } if (!set.add(instance)) { return; } for (ObjectType interfaceType : instance.getCtorExtendedInterfaces()) { addRelatedInterfaces(interfaceType, set); } } }
/** * A function is a subtype of another if their call methods are related via subtyping and {@code * this} is a subtype of {@code that} with regard to the prototype chain. */ @Override public boolean isSubtype(JSType that) { if (JSType.isSubtypeHelper(this, that)) { return true; } if (that.isFunctionType()) { FunctionType other = that.toMaybeFunctionType(); if (other.isInterface()) { // Any function can be assigned to an interface function. return true; } if (isInterface()) { // An interface function cannot be assigned to anything. return false; } // If functionA is a subtype of functionB, then their "this" types // should be contravariant. However, this causes problems because // of the way we enforce overrides. Because function(this:SubFoo) // is not a subtype of function(this:Foo), our override check treats // this as an error. Let's punt on all this for now. // TODO(nicksantos): fix this. boolean treatThisTypesAsCovariant = // An interface 'this'-type is non-restrictive. // In practical terms, if C implements I, and I has a method m, // then any m doesn't necessarily have to C#m's 'this' // type doesn't need to match I. (other.typeOfThis.toObjectType() != null && other.typeOfThis.toObjectType().getConstructor() != null && other.typeOfThis.toObjectType().getConstructor().isInterface()) || // If one of the 'this' types is covariant of the other, // then we'll treat them as covariant (see comment above). other.typeOfThis.isSubtype(this.typeOfThis) || this.typeOfThis.isSubtype(other.typeOfThis); return treatThisTypesAsCovariant && this.call.isSubtype(other.call); } return getNativeType(JSTypeNative.FUNCTION_PROTOTYPE).isSubtype(that); }
/** @param fnNode A node for a function for which to generate a type annotation */ private String getFunctionAnnotation(Node fnNode) { Preconditions.checkState(fnNode.isFunction()); StringBuilder sb = new StringBuilder("/**\n"); JSType type = fnNode.getJSType(); if (type == null || type.isUnknownType()) { return ""; } FunctionType funType = type.toMaybeFunctionType(); // We need to use the child nodes of the function as the nodes for the // parameters of the function type do not have the real parameter names. // FUNCTION // NAME // LP // NAME param1 // NAME param2 if (fnNode != null) { Node paramNode = NodeUtil.getFunctionParameters(fnNode).getFirstChild(); // Param types for (Node n : funType.getParameters()) { // Bail out if the paramNode is not there. if (paramNode == null) { break; } sb.append(" * "); appendAnnotation(sb, "param", getParameterNodeJSDocType(n)); sb.append(" ").append(paramNode.getString()).append("\n"); paramNode = paramNode.getNext(); } } // Return type JSType retType = funType.getReturnType(); if (retType != null && !retType.isUnknownType() && !retType.isEmptyType()) { sb.append(" * "); appendAnnotation(sb, "return", retType.toAnnotationString()); sb.append("\n"); } // Constructor/interface if (funType.isConstructor() || funType.isInterface()) { FunctionType superConstructor = funType.getSuperClassConstructor(); if (superConstructor != null) { ObjectType superInstance = funType.getSuperClassConstructor().getInstanceType(); if (!superInstance.toString().equals("Object")) { sb.append(" * "); appendAnnotation(sb, "extends", superInstance.toAnnotationString()); sb.append("\n"); } } if (funType.isInterface()) { for (ObjectType interfaceType : funType.getExtendedInterfaces()) { sb.append(" * "); appendAnnotation(sb, "extends", interfaceType.toAnnotationString()); sb.append("\n"); } } // Avoid duplicates, add implemented type to a set first Set<String> interfaces = Sets.newTreeSet(); for (ObjectType interfaze : funType.getImplementedInterfaces()) { interfaces.add(interfaze.toAnnotationString()); } for (String interfaze : interfaces) { sb.append(" * "); appendAnnotation(sb, "implements", interfaze); sb.append("\n"); } if (funType.isConstructor()) { sb.append(" * @constructor\n"); } else if (funType.isInterface()) { sb.append(" * @interface\n"); } } if (fnNode != null && fnNode.getBooleanProp(Node.IS_DISPATCHER)) { sb.append(" * @javadispatch\n"); } sb.append(" */\n"); return sb.toString(); }