/** * Generates an empty manifest for a rule that does not directly specify resources. * * <p><strong>Note:</strong> This generated manifest can then be used as the primary manifest when * merging with dependencies. * * @return the generated ApplicationManifest */ public static ApplicationManifest generatedManifest(RuleContext ruleContext) { Artifact generatedManifest = ruleContext.getUniqueDirectoryArtifact( ruleContext.getRule().getName() + "_generated", new PathFragment("AndroidManifest.xml"), ruleContext.getBinOrGenfilesDirectory()); String manifestPackage; if (ruleContext.attributes().isAttributeValueExplicitlySpecified("custom_package")) { manifestPackage = ruleContext.attributes().get("custom_package", Type.STRING); } else { manifestPackage = JavaUtil.getJavaFullClassname(ruleContext.getRule().getPackage().getNameFragment()); } String contents = Joiner.on("\n") .join( "<?xml version=\"1.0\" encoding=\"utf-8\"?>", "<manifest xmlns:android=\"http://schemas.android.com/apk/res/android\"", " package=\"" + manifestPackage + "\">", " <application>", " </application>", "</manifest>"); ruleContext .getAnalysisEnvironment() .registerAction( new FileWriteAction( ruleContext.getActionOwner(), generatedManifest, contents, false /* makeExecutable */)); return new ApplicationManifest(generatedManifest); }
/** * Create a Rule Configured Target from the ruleContext and the ruleImplementation. The * registeredProviderTypes map indicates which keys in structs returned by skylark rules should be * interpreted as native TransitiveInfoProvider instances of type (map value). */ public static ConfiguredTarget buildRule( RuleContext ruleContext, BaseFunction ruleImplementation, Map<String, Class<? extends TransitiveInfoProvider>> registeredProviderTypes) throws InterruptedException { String expectFailure = ruleContext.attributes().get("expect_failure", Type.STRING); try (Mutability mutability = Mutability.create("configured target")) { SkylarkRuleContext skylarkRuleContext = new SkylarkRuleContext(ruleContext, Kind.RULE); Environment env = Environment.builder(mutability) .setSkylark() .setCallerLabel(ruleContext.getLabel()) .setGlobals( ruleContext .getRule() .getRuleClassObject() .getRuleDefinitionEnvironment() .getGlobals()) .setEventHandler(ruleContext.getAnalysisEnvironment().getEventHandler()) .build(); // NB: loading phase functions are not available: this is analysis already, // so we do *not* setLoadingPhase(). Object target = ruleImplementation.call( ImmutableList.<Object>of(skylarkRuleContext), ImmutableMap.<String, Object>of(), /*ast=*/ null, env); if (ruleContext.hasErrors()) { return null; } else if (!(target instanceof SkylarkClassObject) && target != Runtime.NONE && !(target instanceof Iterable)) { ruleContext.ruleError( String.format( "Rule should return a return a struct or a list, but got %s", SkylarkType.typeOf(target))); return null; } else if (!expectFailure.isEmpty()) { ruleContext.ruleError("Expected failure not found: " + expectFailure); return null; } ConfiguredTarget configuredTarget = createTarget(ruleContext, target, registeredProviderTypes); SkylarkProviderValidationUtil.checkOrphanArtifacts(ruleContext); return configuredTarget; } catch (EvalException e) { addRuleToStackTrace(e, ruleContext.getRule(), ruleImplementation); // If the error was expected, return an empty target. if (!expectFailure.isEmpty() && getMessageWithoutStackTrace(e).matches(expectFailure)) { return new com.google.devtools.build.lib.analysis.RuleConfiguredTargetBuilder(ruleContext) .add(RunfilesProvider.class, RunfilesProvider.EMPTY) .build(); } ruleContext.ruleError("\n" + e.print()); return null; } }
/** * Returns the crosstool-derived link action inputs for a given rule. Adds the given set of * artifacts as extra inputs. */ protected NestedSet<Artifact> fullInputsForLink( RuleContext ruleContext, NestedSet<Artifact> link) { return NestedSetBuilder.<Artifact>stableOrder() .addTransitive(link) .addTransitive(AnalysisUtils.getMiddlemanFor(ruleContext, ":libc_top")) .add( ruleContext .getAnalysisEnvironment() .getEmbeddedToolArtifact(CppRuleClasses.BUILD_INTERFACE_SO)) .build(); }
private static Artifact derivedArtifact( ConfiguredTarget base, RuleContext ruleContext, String suffix) { BuildConfiguration configuration = ruleContext.getConfiguration(); assert configuration != null; Root genfilesDirectory = configuration.getGenfilesDirectory(); PathFragment derivedFilePath = getOutputFilePath(base, ruleContext, suffix); return ruleContext .getAnalysisEnvironment() .getDerivedArtifact(derivedFilePath, genfilesDirectory); }
/** * Creates a builder from a rule. This also uses the configuration and artifact factory from the * rule. */ public CppCompileActionBuilder(RuleContext ruleContext, Artifact sourceFile, Label sourceLabel) { this.owner = ruleContext.getActionOwner(); this.actionContext = CppCompileActionContext.class; this.cppConfiguration = ruleContext.getFragment(CppConfiguration.class); this.analysisEnvironment = ruleContext.getAnalysisEnvironment(); this.sourceFile = sourceFile; this.sourceLabel = sourceLabel; this.configuration = ruleContext.getConfiguration(); this.mandatoryInputsBuilder = NestedSetBuilder.stableOrder(); this.pluginInputsBuilder = NestedSetBuilder.stableOrder(); this.lipoScannableMap = getLipoScannableMap(ruleContext); this.ruleContext = ruleContext; features.addAll(ruleContext.getFeatures()); }
/** Create a Rule Configured Target from the ruleContext and the ruleImplementation. */ public static ConfiguredTarget buildRule( RuleContext ruleContext, BaseFunction ruleImplementation) { String expectFailure = ruleContext.attributes().get("expect_failure", Type.STRING); try { SkylarkRuleContext skylarkRuleContext = new SkylarkRuleContext(ruleContext); SkylarkEnvironment env = ruleContext .getRule() .getRuleClassObject() .getRuleDefinitionEnvironment() .cloneEnv(ruleContext.getAnalysisEnvironment().getEventHandler()); // Collect the symbols to disable statically and pass at the next call, so we don't need to // clone the RuleDefinitionEnvironment. env.disableOnlyLoadingPhaseObjects(); Object target = ruleImplementation.call( ImmutableList.<Object>of(skylarkRuleContext), ImmutableMap.<String, Object>of(), null, env); if (ruleContext.hasErrors()) { return null; } else if (!(target instanceof SkylarkClassObject) && target != Environment.NONE) { ruleContext.ruleError("Rule implementation doesn't return a struct"); return null; } else if (!expectFailure.isEmpty()) { ruleContext.ruleError("Expected failure not found: " + expectFailure); return null; } ConfiguredTarget configuredTarget = createTarget(ruleContext, target); checkOrphanArtifacts(ruleContext); return configuredTarget; } catch (InterruptedException e) { ruleContext.ruleError(e.getMessage()); return null; } catch (EvalException e) { // If the error was expected, return an empty target. if (!expectFailure.isEmpty() && e.getMessage().matches(expectFailure)) { return new com.google.devtools.build.lib.analysis.RuleConfiguredTargetBuilder(ruleContext) .add(RunfilesProvider.class, RunfilesProvider.EMPTY) .build(); } ruleContext.ruleError("\n" + e.print()); return null; } }
private static void checkOrphanArtifacts(RuleContext ruleContext) throws EvalException { ImmutableSet<Artifact> orphanArtifacts = ruleContext.getAnalysisEnvironment().getOrphanArtifacts(); if (!orphanArtifacts.isEmpty()) { throw new EvalException( null, "The following files have no generating action:\n" + Joiner.on("\n") .join( Iterables.transform( orphanArtifacts, new Function<Artifact, String>() { @Override public String apply(Artifact artifact) { return artifact.getRootRelativePathString(); } }))); } }
@Override public ConfiguredTarget create(RuleContext ruleContext) throws RuleErrorException, InterruptedException { TransitiveInfoCollection lipoContextCollector = ruleContext.getPrerequisite(":lipo_context_collector", Mode.DONT_CHECK); if (lipoContextCollector != null && lipoContextCollector.getProvider(LipoContextProvider.class) == null) { ruleContext.ruleError("--lipo_context must point to a cc_binary or a cc_test rule"); return null; } CppConfiguration cppConfiguration = Preconditions.checkNotNull(ruleContext.getFragment(CppConfiguration.class)); Path fdoZip = ruleContext.getConfiguration().getCompilationMode() == CompilationMode.OPT ? cppConfiguration.getFdoZip() : null; SkyKey fdoKey = FdoSupportValue.key( cppConfiguration.getLipoMode(), fdoZip, cppConfiguration.getFdoInstrument()); SkyFunction.Environment skyframeEnv = ruleContext.getAnalysisEnvironment().getSkyframeEnv(); FdoSupportValue fdoSupport; try { fdoSupport = (FdoSupportValue) skyframeEnv.getValueOrThrow(fdoKey, FdoException.class, IOException.class); } catch (FdoException | IOException e) { ruleContext.ruleError("cannot initialize FDO: " + e.getMessage()); return null; } if (skyframeEnv.valuesMissing()) { return null; } final Label label = ruleContext.getLabel(); final NestedSet<Artifact> crosstool = ruleContext .getPrerequisite("all_files", Mode.HOST) .getProvider(FileProvider.class) .getFilesToBuild(); final NestedSet<Artifact> crosstoolMiddleman = getFiles(ruleContext, "all_files"); final NestedSet<Artifact> compile = getFiles(ruleContext, "compiler_files"); final NestedSet<Artifact> strip = getFiles(ruleContext, "strip_files"); final NestedSet<Artifact> objcopy = getFiles(ruleContext, "objcopy_files"); final NestedSet<Artifact> link = getFiles(ruleContext, "linker_files"); final NestedSet<Artifact> dwp = getFiles(ruleContext, "dwp_files"); final NestedSet<Artifact> libcLink = inputsForLibc(ruleContext); String purposePrefix = Actions.escapeLabel(label) + "_"; String runtimeSolibDirBase = "_solib_" + "_" + Actions.escapeLabel(label); final PathFragment runtimeSolibDir = ruleContext.getConfiguration().getBinFragment().getRelative(runtimeSolibDirBase); // Static runtime inputs. TransitiveInfoCollection staticRuntimeLibDep = selectDep(ruleContext, "static_runtime_libs", cppConfiguration.getStaticRuntimeLibsLabel()); final NestedSet<Artifact> staticRuntimeLinkInputs; final Artifact staticRuntimeLinkMiddleman; if (cppConfiguration.supportsEmbeddedRuntimes()) { staticRuntimeLinkInputs = staticRuntimeLibDep.getProvider(FileProvider.class).getFilesToBuild(); } else { staticRuntimeLinkInputs = NestedSetBuilder.emptySet(Order.STABLE_ORDER); } if (!staticRuntimeLinkInputs.isEmpty()) { NestedSet<Artifact> staticRuntimeLinkMiddlemanSet = CompilationHelper.getAggregatingMiddleman( ruleContext, purposePrefix + "static_runtime_link", staticRuntimeLibDep); staticRuntimeLinkMiddleman = staticRuntimeLinkMiddlemanSet.isEmpty() ? null : Iterables.getOnlyElement(staticRuntimeLinkMiddlemanSet); } else { staticRuntimeLinkMiddleman = null; } Preconditions.checkState( (staticRuntimeLinkMiddleman == null) == staticRuntimeLinkInputs.isEmpty()); // Dynamic runtime inputs. TransitiveInfoCollection dynamicRuntimeLibDep = selectDep( ruleContext, "dynamic_runtime_libs", cppConfiguration.getDynamicRuntimeLibsLabel()); final NestedSet<Artifact> dynamicRuntimeLinkInputs; final Artifact dynamicRuntimeLinkMiddleman; if (cppConfiguration.supportsEmbeddedRuntimes()) { NestedSetBuilder<Artifact> dynamicRuntimeLinkInputsBuilder = NestedSetBuilder.stableOrder(); for (Artifact artifact : dynamicRuntimeLibDep.getProvider(FileProvider.class).getFilesToBuild()) { if (CppHelper.SHARED_LIBRARY_FILETYPES.matches(artifact.getFilename())) { dynamicRuntimeLinkInputsBuilder.add( SolibSymlinkAction.getCppRuntimeSymlink( ruleContext, artifact, runtimeSolibDirBase, ruleContext.getConfiguration())); } else { dynamicRuntimeLinkInputsBuilder.add(artifact); } } dynamicRuntimeLinkInputs = dynamicRuntimeLinkInputsBuilder.build(); } else { dynamicRuntimeLinkInputs = NestedSetBuilder.emptySet(Order.STABLE_ORDER); } if (!dynamicRuntimeLinkInputs.isEmpty()) { List<Artifact> dynamicRuntimeLinkMiddlemanSet = CppHelper.getAggregatingMiddlemanForCppRuntimes( ruleContext, purposePrefix + "dynamic_runtime_link", dynamicRuntimeLibDep, runtimeSolibDirBase, ruleContext.getConfiguration()); dynamicRuntimeLinkMiddleman = dynamicRuntimeLinkMiddlemanSet.isEmpty() ? null : Iterables.getOnlyElement(dynamicRuntimeLinkMiddlemanSet); } else { dynamicRuntimeLinkMiddleman = null; } Preconditions.checkState( (dynamicRuntimeLinkMiddleman == null) == dynamicRuntimeLinkInputs.isEmpty()); CppCompilationContext.Builder contextBuilder = new CppCompilationContext.Builder(ruleContext); CppModuleMap moduleMap = createCrosstoolModuleMap(ruleContext); if (moduleMap != null) { contextBuilder.setCppModuleMap(moduleMap); } final CppCompilationContext context = contextBuilder.build(); boolean supportsParamFiles = ruleContext.attributes().get("supports_param_files", BOOLEAN); boolean supportsHeaderParsing = ruleContext.attributes().get("supports_header_parsing", BOOLEAN); NestedSetBuilder<Pair<String, String>> coverageEnvironment = NestedSetBuilder.compileOrder(); coverageEnvironment.add( Pair.of("COVERAGE_GCOV_PATH", cppConfiguration.getGcovExecutable().getPathString())); if (cppConfiguration.getFdoInstrument() != null) { coverageEnvironment.add( Pair.of("FDO_DIR", cppConfiguration.getFdoInstrument().getPathString())); } CcToolchainProvider provider = new CcToolchainProvider( cppConfiguration, crosstool, fullInputsForCrosstool(ruleContext, crosstoolMiddleman), compile, strip, objcopy, fullInputsForLink(ruleContext, link), dwp, libcLink, staticRuntimeLinkInputs, staticRuntimeLinkMiddleman, dynamicRuntimeLinkInputs, dynamicRuntimeLinkMiddleman, runtimeSolibDir, context, supportsParamFiles, supportsHeaderParsing, getBuildVariables(ruleContext), getBuiltinIncludes(ruleContext), coverageEnvironment.build()); RuleConfiguredTargetBuilder builder = new RuleConfiguredTargetBuilder(ruleContext) .add(CcToolchainProvider.class, provider) .add(FdoSupportProvider.class, new FdoSupportProvider(fdoSupport.getFdoSupport())) .setFilesToBuild(new NestedSetBuilder<Artifact>(Order.STABLE_ORDER).build()) .add(RunfilesProvider.class, RunfilesProvider.simple(Runfiles.EMPTY)); // If output_license is specified on the cc_toolchain rule, override the transitive licenses // with that one. This is necessary because cc_toolchain is used in the target configuration, // but it is sort-of-kind-of a tool, but various parts of it are linked into the output... // ...so we trust the judgment of the author of the cc_toolchain rule to figure out what // licenses should be propagated to C++ targets. License outputLicense = ruleContext.getRule().getToolOutputLicense(ruleContext.attributes()); if (outputLicense != null && outputLicense != License.NO_LICENSE) { final NestedSet<TargetLicense> license = NestedSetBuilder.create( Order.STABLE_ORDER, new TargetLicense(ruleContext.getLabel(), outputLicense)); LicensesProvider licensesProvider = new LicensesProvider() { @Override public NestedSet<TargetLicense> getTransitiveLicenses() { return license; } }; builder.add(LicensesProvider.class, licensesProvider); } return builder.build(); }
/** Builds the {@link CppCompilationContext}. */ public CppCompilationContext build() { return build( ruleContext == null ? null : ruleContext.getActionOwner(), ruleContext == null ? null : ruleContext.getAnalysisEnvironment().getMiddlemanFactory()); }
/** * Constructs the C++ linker actions. It generally generates two actions, one for a static library * and one for a dynamic library. If PIC is required for shared libraries, but not for binaries, * it additionally creates a third action to generate a PIC static library. * * <p>For dynamic libraries, this method can additionally create an interface shared library that * can be used for linking, but doesn't contain any executable code. This increases the number of * cache hits for link actions. Call {@link #setAllowInterfaceSharedObjects(boolean)} to enable * this behavior. * * @throws RuleErrorException */ public CcLinkingOutputs createCcLinkActions(CcCompilationOutputs ccOutputs) throws RuleErrorException { // For now only handle static links. Note that the dynamic library link below ignores linkType. // TODO(bazel-team): Either support non-static links or move this check to setLinkType(). Preconditions.checkState(linkType.isStaticLibraryLink(), "can only handle static links"); CcLinkingOutputs.Builder result = new CcLinkingOutputs.Builder(); if (cppConfiguration.isLipoContextCollector()) { // Don't try to create LIPO link actions in collector mode, // because it needs some data that's not available at this point. return result.build(); } AnalysisEnvironment env = ruleContext.getAnalysisEnvironment(); boolean usePicForBinaries = CppHelper.usePic(ruleContext, true); boolean usePicForSharedLibs = CppHelper.usePic(ruleContext, false); // Create static library (.a). The linkType only reflects whether the library is alwayslink or // not. The PIC-ness is determined by whether we need to use PIC or not. There are three cases // for (usePicForSharedLibs usePicForBinaries): // // (1) (false false) -> no pic code // (2) (true false) -> shared libraries as pic, but not binaries // (3) (true true) -> both shared libraries and binaries as pic // // In case (3), we always need PIC, so only create one static library containing the PIC object // files. The name therefore does not match the content. // // Presumably, it is done this way because the .a file is an implicit output of every cc_library // rule, so we can't use ".pic.a" that in the always-PIC case. // If the crosstool is configured to select an output artifact, we use that selection. // Otherwise, we use linux defaults. Artifact linkedArtifact = getLinkedArtifact(linkType); CppLinkAction maybePicAction = newLinkActionBuilder(linkedArtifact) .addNonLibraryInputs(ccOutputs.getObjectFiles(usePicForBinaries)) .addNonLibraryInputs(ccOutputs.getHeaderTokenFiles()) .addLTOBitcodeFiles(ccOutputs.getLtoBitcodeFiles()) .setLinkType(linkType) .setLinkStaticness(LinkStaticness.FULLY_STATIC) .setFeatureConfiguration(featureConfiguration) .build(); env.registerAction(maybePicAction); result.addStaticLibrary(maybePicAction.getOutputLibrary()); // Create a second static library (.pic.a). Only in case (2) do we need both PIC and non-PIC // static libraries. In that case, the first static library contains the non-PIC code, and this // one contains the PIC code, so the names match the content. if (!usePicForBinaries && usePicForSharedLibs) { LinkTargetType picLinkType = (linkType == LinkTargetType.ALWAYS_LINK_STATIC_LIBRARY) ? LinkTargetType.ALWAYS_LINK_PIC_STATIC_LIBRARY : LinkTargetType.PIC_STATIC_LIBRARY; // If the crosstool is configured to select an output artifact, we use that selection. // Otherwise, we use linux defaults. Artifact picArtifact = getLinkedArtifact(picLinkType); CppLinkAction picAction = newLinkActionBuilder(picArtifact) .addNonLibraryInputs(ccOutputs.getObjectFiles(true)) .addNonLibraryInputs(ccOutputs.getHeaderTokenFiles()) .addLTOBitcodeFiles(ccOutputs.getLtoBitcodeFiles()) .setLinkType(picLinkType) .setLinkStaticness(LinkStaticness.FULLY_STATIC) .setFeatureConfiguration(featureConfiguration) .build(); env.registerAction(picAction); result.addPicStaticLibrary(picAction.getOutputLibrary()); } if (!createDynamicLibrary) { return result.build(); } // Create dynamic library. Artifact soImpl; if (soImplArtifact == null) { // If the crosstool is configured to select an output artifact, we use that selection. // Otherwise, we use linux defaults. soImpl = getLinkedArtifact(LinkTargetType.DYNAMIC_LIBRARY); } else { soImpl = soImplArtifact; } List<String> sonameLinkopts = ImmutableList.of(); Artifact soInterface = null; if (cppConfiguration.useInterfaceSharedObjects() && allowInterfaceSharedObjects) { soInterface = CppHelper.getLinuxLinkedArtifact(ruleContext, LinkTargetType.INTERFACE_DYNAMIC_LIBRARY); sonameLinkopts = ImmutableList.of( "-Wl,-soname=" + SolibSymlinkAction.getDynamicLibrarySoname( soImpl.getRootRelativePath(), false)); } // Should we also link in any libraries that this library depends on? // That is required on some systems... CppLinkActionBuilder linkActionBuilder = newLinkActionBuilder(soImpl) .setInterfaceOutput(soInterface) .addNonLibraryInputs(ccOutputs.getObjectFiles(usePicForSharedLibs)) .addNonLibraryInputs(ccOutputs.getHeaderTokenFiles()) .addLTOBitcodeFiles(ccOutputs.getLtoBitcodeFiles()) .setLinkType(LinkTargetType.DYNAMIC_LIBRARY) .setLinkStaticness(LinkStaticness.DYNAMIC) .addLinkopts(linkopts) .addLinkopts(sonameLinkopts) .setRuntimeInputs( CppHelper.getToolchain(ruleContext).getDynamicRuntimeLinkMiddleman(), CppHelper.getToolchain(ruleContext).getDynamicRuntimeLinkInputs()) .setFeatureConfiguration(featureConfiguration); if (!ccOutputs.getLtoBitcodeFiles().isEmpty() && featureConfiguration.isEnabled(CppRuleClasses.THIN_LTO)) { linkActionBuilder.setLTOIndexing(true); CppLinkAction indexAction = linkActionBuilder.build(); env.registerAction(indexAction); for (LTOBackendArtifacts ltoArtifacts : indexAction.getAllLTOBackendArtifacts()) { ltoArtifacts.scheduleLTOBackendAction(ruleContext, usePicForSharedLibs); } linkActionBuilder.setLTOIndexing(false); } CppLinkAction action = linkActionBuilder.build(); env.registerAction(action); LibraryToLink dynamicLibrary = action.getOutputLibrary(); LibraryToLink interfaceLibrary = action.getInterfaceOutputLibrary(); if (interfaceLibrary == null) { interfaceLibrary = dynamicLibrary; } // If shared library has neverlink=1, then leave it untouched. Otherwise, // create a mangled symlink for it and from now on reference it through // mangled name only. if (neverLink) { result.addDynamicLibrary(interfaceLibrary); result.addExecutionDynamicLibrary(dynamicLibrary); } else { LibraryToLink libraryLink = SolibSymlinkAction.getDynamicLibrarySymlink( ruleContext, interfaceLibrary.getArtifact(), false, false, ruleContext.getConfiguration()); result.addDynamicLibrary(libraryLink); LibraryToLink implLibraryLink = SolibSymlinkAction.getDynamicLibrarySymlink( ruleContext, dynamicLibrary.getArtifact(), false, false, ruleContext.getConfiguration()); result.addExecutionDynamicLibrary(implLibraryLink); } return result.build(); }
/** * Constructs the C++ compiler actions. It generally creates one action for every specified source * file. It takes into account LIPO, fake-ness, coverage, and PIC, in addition to using the * settings specified on the current object. This method should only be called once. */ public CcCompilationOutputs createCcCompileActions() { CcCompilationOutputs.Builder result = new CcCompilationOutputs.Builder(); Preconditions.checkNotNull(context); AnalysisEnvironment env = ruleContext.getAnalysisEnvironment(); if (shouldProvideHeaderModules()) { Artifact moduleMapArtifact = context.getCppModuleMap().getArtifact(); Label moduleMapLabel = Label.parseAbsoluteUnchecked(context.getCppModuleMap().getName()); CppCompileActionBuilder builder = initializeCompileAction(moduleMapArtifact, moduleMapLabel, /*forInterface=*/ true); // A header module compile action is just like a normal compile action, but: // - the compiled source file is the module map // - it creates a header module (.pcm file). createSourceAction( FileSystemUtils.removeExtension(semantics.getEffectiveSourcePath(moduleMapArtifact)) .getPathString(), result, env, moduleMapArtifact, builder, ArtifactCategory.CPP_MODULE, /*addObject=*/ false, /*enableCoverage=*/ false, /*generateDwo=*/ false, CppFileTypes.mustProduceDotdFile(moduleMapArtifact.getFilename()), ImmutableMap.<String, String>of()); } for (CppSource source : sourceFiles) { Artifact sourceArtifact = source.getSource(); Label sourceLabel = source.getLabel(); String outputName = FileSystemUtils.removeExtension(semantics.getEffectiveSourcePath(sourceArtifact)) .getPathString(); CppCompileActionBuilder builder = initializeCompileAction(sourceArtifact, sourceLabel, /*forInterface=*/ false); if (CppFileTypes.CPP_HEADER.matches(source.getSource().getExecPath())) { createHeaderAction( outputName, result, env, builder, CppFileTypes.mustProduceDotdFile(sourceArtifact.getFilename())); } else { createSourceAction( outputName, result, env, sourceArtifact, builder, ArtifactCategory.OBJECT_FILE, /*addObject=*/ true, isCodeCoverageEnabled(), /*generateDwo=*/ cppConfiguration.useFission(), CppFileTypes.mustProduceDotdFile(sourceArtifact.getFilename()), source.getBuildVariables()); } } compilationOutputs = result.build(); return compilationOutputs; }
private static ConfiguredTarget addStructFieldsAndBuild( RuleContext ruleContext, RuleConfiguredTargetBuilder builder, Object target, Artifact executable, Map<String, Class<? extends TransitiveInfoProvider>> registeredProviderTypes) throws EvalException { Location loc = null; Runfiles statelessRunfiles = null; Runfiles dataRunfiles = null; Runfiles defaultRunfiles = null; if (target instanceof SkylarkClassObject) { SkylarkClassObject struct = (SkylarkClassObject) target; loc = struct.getCreationLoc(); for (String key : struct.getKeys()) { if (key.equals("files")) { // If we specify files_to_build we don't have the executable in it by default. builder.setFilesToBuild( cast("files", struct, SkylarkNestedSet.class, Artifact.class, loc) .getSet(Artifact.class)); } else if (key.equals("runfiles")) { statelessRunfiles = cast("runfiles", struct, Runfiles.class, loc); } else if (key.equals("data_runfiles")) { dataRunfiles = cast("data_runfiles", struct, Runfiles.class, loc); } else if (key.equals("default_runfiles")) { defaultRunfiles = cast("default_runfiles", struct, Runfiles.class, loc); } else if (key.equals("output_groups")) { addOutputGroups(struct.getValue(key), loc, builder); } else if (key.equals("instrumented_files")) { SkylarkClassObject insStruct = cast("instrumented_files", struct, SkylarkClassObject.class, loc); Location insLoc = insStruct.getCreationLoc(); FileTypeSet fileTypeSet = FileTypeSet.ANY_FILE; if (insStruct.getKeys().contains("extensions")) { @SuppressWarnings("unchecked") List<String> exts = cast("extensions", insStruct, SkylarkList.class, String.class, insLoc); if (exts.isEmpty()) { fileTypeSet = FileTypeSet.NO_FILE; } else { FileType[] fileTypes = new FileType[exts.size()]; for (int i = 0; i < fileTypes.length; i++) { fileTypes[i] = FileType.of(exts.get(i)); } fileTypeSet = FileTypeSet.of(fileTypes); } } List<String> dependencyAttributes = Collections.emptyList(); if (insStruct.getKeys().contains("dependency_attributes")) { dependencyAttributes = cast("dependency_attributes", insStruct, SkylarkList.class, String.class, insLoc); } List<String> sourceAttributes = Collections.emptyList(); if (insStruct.getKeys().contains("source_attributes")) { sourceAttributes = cast("source_attributes", insStruct, SkylarkList.class, String.class, insLoc); } InstrumentationSpec instrumentationSpec = new InstrumentationSpec(fileTypeSet) .withSourceAttributes(sourceAttributes.toArray(new String[0])) .withDependencyAttributes(dependencyAttributes.toArray(new String[0])); InstrumentedFilesProvider instrumentedFilesProvider = InstrumentedFilesCollector.collect( ruleContext, instrumentationSpec, InstrumentedFilesCollector.NO_METADATA_COLLECTOR, Collections.<Artifact>emptySet()); builder.addProvider(InstrumentedFilesProvider.class, instrumentedFilesProvider); } else if (registeredProviderTypes.containsKey(key)) { Class<? extends TransitiveInfoProvider> providerType = registeredProviderTypes.get(key); TransitiveInfoProvider provider = cast(key, struct, providerType, loc); builder.addProvider(providerType, provider); } else if (key.equals("providers")) { Iterable iterable = cast(key, struct, Iterable.class, loc); for (Object o : iterable) { SkylarkClassObject declaredProvider = SkylarkType.cast( o, SkylarkClassObject.class, loc, "The value of 'providers' should be a sequence of declared providers"); builder.addSkylarkDeclaredProvider(declaredProvider, loc); } } else if (!key.equals("executable")) { // We handled executable already. builder.addSkylarkTransitiveInfo(key, struct.getValue(key), loc); } } } else if (target instanceof Iterable) { loc = ruleContext.getRule().getRuleClassObject().getConfiguredTargetFunction().getLocation(); for (Object o : (Iterable) target) { SkylarkClassObject declaredProvider = SkylarkType.cast( o, SkylarkClassObject.class, loc, "A return value of rule implementation function should be " + "a sequence of declared providers"); Location creationLoc = declaredProvider.getCreationLocOrNull(); builder.addSkylarkDeclaredProvider( declaredProvider, creationLoc != null ? creationLoc : loc); } } if ((statelessRunfiles != null) && (dataRunfiles != null || defaultRunfiles != null)) { throw new EvalException( loc, "Cannot specify the provider 'runfiles' " + "together with 'data_runfiles' or 'default_runfiles'"); } if (statelessRunfiles == null && dataRunfiles == null && defaultRunfiles == null) { // No runfiles specified, set default statelessRunfiles = Runfiles.EMPTY; } RunfilesProvider runfilesProvider = statelessRunfiles != null ? RunfilesProvider.simple(merge(statelessRunfiles, executable, ruleContext)) : RunfilesProvider.withData( // The executable doesn't get into the default runfiles if we have runfiles states. // This is to keep skylark genrule consistent with the original genrule. defaultRunfiles != null ? defaultRunfiles : Runfiles.EMPTY, dataRunfiles != null ? dataRunfiles : Runfiles.EMPTY); builder.addProvider(RunfilesProvider.class, runfilesProvider); Runfiles computedDefaultRunfiles = runfilesProvider.getDefaultRunfiles(); // This works because we only allowed to call a rule *_test iff it's a test type rule. boolean testRule = TargetUtils.isTestRuleName(ruleContext.getRule().getRuleClass()); if (testRule && computedDefaultRunfiles.isEmpty()) { throw new EvalException(loc, "Test rules have to define runfiles"); } if (executable != null || testRule) { RunfilesSupport runfilesSupport = computedDefaultRunfiles.isEmpty() ? null : RunfilesSupport.withExecutable(ruleContext, computedDefaultRunfiles, executable); builder.setRunfilesSupport(runfilesSupport, executable); } if (ruleContext.getRule().getRuleClassObject().isSkylarkTestable()) { SkylarkClassObject actions = ActionsProvider.create(ruleContext.getAnalysisEnvironment().getRegisteredActions()); builder.addSkylarkDeclaredProvider(actions, loc); } try { return builder.build(); } catch (IllegalArgumentException e) { throw new EvalException(loc, e.getMessage()); } }