@Override
  public PCollection<KV<K, CoGbkResult>> apply(KeyedPCollectionTuple<K> input) {
    if (input.isEmpty()) {
      throw new IllegalArgumentException("must have at least one input to a KeyedPCollections");
    }

    // First build the union coder.
    // TODO: Look at better integration of union types with the
    // schema specified in the input.
    List<Coder<?>> codersList = new ArrayList<>();
    for (TaggedKeyedPCollection<K, ?> entry : input.getKeyedCollections()) {
      codersList.add(getValueCoder(entry.pCollection));
    }
    UnionCoder unionCoder = UnionCoder.of(codersList);
    Coder<K> keyCoder = input.getKeyCoder();
    KvCoder<K, RawUnionValue> kVCoder = KvCoder.of(keyCoder, unionCoder);

    PCollectionList<KV<K, RawUnionValue>> unionTables = PCollectionList.empty(input.getPipeline());

    // TODO: Use the schema to order the indices rather than depending
    // on the fact that the schema ordering is identical to the ordering from
    // input.getJoinCollections().
    int index = -1;
    for (TaggedKeyedPCollection<K, ?> entry : input.getKeyedCollections()) {
      index++;
      PCollection<KV<K, RawUnionValue>> unionTable =
          makeUnionTable(index, entry.pCollection, kVCoder);
      unionTables = unionTables.and(unionTable);
    }

    PCollection<KV<K, RawUnionValue>> flattenedTable =
        unionTables.apply(Flatten.<KV<K, RawUnionValue>>pCollections());

    PCollection<KV<K, Iterable<RawUnionValue>>> groupedTable =
        flattenedTable.apply(GroupByKey.<K, RawUnionValue>create());

    CoGbkResultSchema tupleTags = input.getCoGbkResultSchema();
    PCollection<KV<K, CoGbkResult>> result =
        groupedTable.apply(
            ParDo.of(new ConstructCoGbkResultFn<K>(tupleTags)).named("ConstructCoGbkResultFn"));
    result.setCoder(KvCoder.of(keyCoder, CoGbkResultCoder.of(tupleTags, unionCoder)));

    return result;
  }
示例#2
0
    @Override
    public PCollection<KV<String, KV<URI, Double>>> apply(
        PCollection<KV<URI, String>> uriToContent) {

      // Compute the total number of documents, and
      // prepare this singleton PCollectionView for
      // use as a side input.
      final PCollectionView<Long> totalDocuments =
          uriToContent
              .apply(Keys.<URI>create().setName("GetURIs"))
              .apply(RemoveDuplicates.<URI>create().setName("RemoveDuplicateDocs"))
              .apply(Count.<URI>globally())
              .apply(View.<Long>asSingleton());

      // Create a collection of pairs mapping a URI to each
      // of the words in the document associated with that that URI.
      PCollection<KV<URI, String>> uriToWords =
          uriToContent.apply(
              ParDo.named("SplitWords")
                  .of(
                      new DoFn<KV<URI, String>, KV<URI, String>>() {
                        private static final long serialVersionUID = 0;

                        @Override
                        public void processElement(ProcessContext c) {
                          URI uri = c.element().getKey();
                          String line = c.element().getValue();
                          for (String word : line.split("\\W+")) {
                            // Log INFO messages when the word “love” is found.
                            if (word.toLowerCase().equals("love")) {
                              LOG.info("Found {}", word.toLowerCase());
                            }

                            if (!word.isEmpty()) {
                              c.output(KV.of(uri, word.toLowerCase()));
                            }
                          }
                        }
                      }));

      // Compute a mapping from each word to the total
      // number of documents in which it appears.
      PCollection<KV<String, Long>> wordToDocCount =
          uriToWords
              .apply(RemoveDuplicates.<KV<URI, String>>create().setName("RemoveDuplicateWords"))
              .apply(Values.<String>create())
              .apply(Count.<String>perElement().setName("CountDocs"));

      // Compute a mapping from each URI to the total
      // number of words in the document associated with that URI.
      PCollection<KV<URI, Long>> uriToWordTotal =
          uriToWords
              .apply(Keys.<URI>create().setName("GetURIs2"))
              .apply(Count.<URI>perElement().setName("CountWords"));

      // Count, for each (URI, word) pair, the number of
      // occurrences of that word in the document associated
      // with the URI.
      PCollection<KV<KV<URI, String>, Long>> uriAndWordToCount =
          uriToWords.apply(Count.<KV<URI, String>>perElement().setName("CountWordDocPairs"));

      // Adjust the above collection to a mapping from
      // (URI, word) pairs to counts into an isomorphic mapping
      // from URI to (word, count) pairs, to prepare for a join
      // by the URI key.
      PCollection<KV<URI, KV<String, Long>>> uriToWordAndCount =
          uriAndWordToCount.apply(
              ParDo.named("ShiftKeys")
                  .of(
                      new DoFn<KV<KV<URI, String>, Long>, KV<URI, KV<String, Long>>>() {
                        private static final long serialVersionUID = 0;

                        @Override
                        public void processElement(ProcessContext c) {
                          URI uri = c.element().getKey().getKey();
                          String word = c.element().getKey().getValue();
                          Long occurrences = c.element().getValue();
                          c.output(KV.of(uri, KV.of(word, occurrences)));
                        }
                      }));

      // Prepare to join the mapping of URI to (word, count) pairs with
      // the mapping of URI to total word counts, by associating
      // each of the input PCollection<KV<URI, ...>> with
      // a tuple tag. Each input must have the same key type, URI
      // in this case. The type parameter of the tuple tag matches
      // the types of the values for each collection.
      final TupleTag<Long> wordTotalsTag = new TupleTag<Long>();
      final TupleTag<KV<String, Long>> wordCountsTag = new TupleTag<KV<String, Long>>();
      KeyedPCollectionTuple<URI> coGbkInput =
          KeyedPCollectionTuple.of(wordTotalsTag, uriToWordTotal)
              .and(wordCountsTag, uriToWordAndCount);

      // Perform a CoGroupByKey (a sort of pre-join) on the prepared
      // inputs. This yields a mapping from URI to a CoGbkResult
      // (CoGroupByKey Result). The CoGbkResult is a mapping
      // from the above tuple tags to the values in each input
      // associated with a particular URI. In this case, each
      // KV<URI, CoGbkResult> group a URI with the total number of
      // words in that document as well as all the (word, count)
      // pairs for particular words.
      PCollection<KV<URI, CoGbkResult>> uriToWordAndCountAndTotal =
          coGbkInput.apply(CoGroupByKey.<URI>create().setName("CoGroupByURI"));

      // Compute a mapping from each word to a (URI, term frequency)
      // pair for each URI. A word's term frequency for a document
      // is simply the number of times that word occurs in the document
      // divided by the total number of words in the document.
      PCollection<KV<String, KV<URI, Double>>> wordToUriAndTf =
          uriToWordAndCountAndTotal.apply(
              ParDo.named("ComputeTermFrequencies")
                  .of(
                      new DoFn<KV<URI, CoGbkResult>, KV<String, KV<URI, Double>>>() {
                        private static final long serialVersionUID = 0;

                        @Override
                        public void processElement(ProcessContext c) {
                          URI uri = c.element().getKey();
                          Long wordTotal = c.element().getValue().getOnly(wordTotalsTag);

                          for (KV<String, Long> wordAndCount :
                              c.element().getValue().getAll(wordCountsTag)) {
                            String word = wordAndCount.getKey();
                            Long wordCount = wordAndCount.getValue();
                            Double termFrequency =
                                wordCount.doubleValue() / wordTotal.doubleValue();
                            c.output(KV.of(word, KV.of(uri, termFrequency)));
                          }
                        }
                      }));

      // Compute a mapping from each word to its document frequency.
      // A word's document frequency in a corpus is the number of
      // documents in which the word appears divided by the total
      // number of documents in the corpus. Note how the total number of
      // documents is passed as a side input; the same value is
      // presented to each invocation of the DoFn.
      PCollection<KV<String, Double>> wordToDf =
          wordToDocCount.apply(
              ParDo.named("ComputeDocFrequencies")
                  .withSideInputs(totalDocuments)
                  .of(
                      new DoFn<KV<String, Long>, KV<String, Double>>() {
                        private static final long serialVersionUID = 0;

                        @Override
                        public void processElement(ProcessContext c) {
                          String word = c.element().getKey();
                          Long documentCount = c.element().getValue();
                          Long documentTotal = c.sideInput(totalDocuments);
                          Double documentFrequency =
                              documentCount.doubleValue() / documentTotal.doubleValue();

                          c.output(KV.of(word, documentFrequency));
                        }
                      }));

      // Join the term frequency and document frequency
      // collections, each keyed on the word.
      final TupleTag<KV<URI, Double>> tfTag = new TupleTag<KV<URI, Double>>();
      final TupleTag<Double> dfTag = new TupleTag<Double>();
      PCollection<KV<String, CoGbkResult>> wordToUriAndTfAndDf =
          KeyedPCollectionTuple.of(tfTag, wordToUriAndTf)
              .and(dfTag, wordToDf)
              .apply(CoGroupByKey.<String>create());

      // Compute a mapping from each word to a (URI, TF-IDF) score
      // for each URI. There are a variety of definitions of TF-IDF
      // ("term frequency - inverse document frequency") score;
      // here we use a basic version that is the term frequency
      // divided by the log of the document frequency.
      PCollection<KV<String, KV<URI, Double>>> wordToUriAndTfIdf =
          wordToUriAndTfAndDf.apply(
              ParDo.named("ComputeTfIdf")
                  .of(
                      new DoFn<KV<String, CoGbkResult>, KV<String, KV<URI, Double>>>() {
                        private static final long serialVersionUID = 0;

                        @Override
                        public void processElement(ProcessContext c) {
                          String word = c.element().getKey();
                          Double df = c.element().getValue().getOnly(dfTag);

                          for (KV<URI, Double> uriAndTf : c.element().getValue().getAll(tfTag)) {
                            URI uri = uriAndTf.getKey();
                            Double tf = uriAndTf.getValue();
                            Double tfIdf = tf * Math.log(1 / df);
                            c.output(KV.of(word, KV.of(uri, tfIdf)));
                          }
                        }
                      }));

      return wordToUriAndTfIdf;
    }