/** * Creates a {@link Justification}, writes it on the store using {@link * RDFJoinNexus#newInsertBuffer(IMutableRelation)}, verifies that we can read it back from the * store, and then retracts the justified statement and verifies that the justification was also * retracted. */ public void test_writeReadRetract() { final Properties properties = super.getProperties(); // override the default axiom model. properties.setProperty( com.bigdata.rdf.store.AbstractTripleStore.Options.AXIOMS_CLASS, NoAxioms.class.getName()); final AbstractTripleStore store = getStore(properties); try { if (!store.isJustify()) { log.warn("Test skipped - justifications not enabled"); } /* * the explicit statement that is the support for the rule. */ final IV U = store.addTerm(new URIImpl("http://www.bigdata.com/U")); final IV A = store.addTerm(new URIImpl("http://www.bigdata.com/A")); final IV Y = store.addTerm(new URIImpl("http://www.bigdata.com/Y")); store.addStatements( new SPO[] { // new SPO(U, A, Y, StatementEnum.Explicit) // }, // 1); assertTrue(store.hasStatement(U, A, Y)); assertEquals(1, store.getStatementCount()); final InferenceEngine inf = store.getInferenceEngine(); final Vocabulary vocab = store.getVocabulary(); // the rule. final Rule rule = new RuleRdf01(store.getSPORelation().getNamespace(), vocab); final IJoinNexus joinNexus = store .newJoinNexusFactory( RuleContextEnum.DatabaseAtOnceClosure, ActionEnum.Insert, IJoinNexus.ALL, null /* filter */) .newInstance(store.getIndexManager()); /* * The buffer that accepts solutions and causes them to be written * onto the statement indices and the justifications index. */ final IBuffer<ISolution[]> insertBuffer = joinNexus.newInsertBuffer(store.getSPORelation()); // the expected justification (setup and verified below). final Justification jst; // the expected entailment. final SPO expectedEntailment = new SPO( // A, vocab.get(RDF.TYPE), vocab.get(RDF.PROPERTY), StatementEnum.Inferred); { final IBindingSet bindingSet = joinNexus.newBindingSet(rule); /* * Note: rdfs1 is implemented using a distinct term scan. This * has the effect of leaving the variables that do not appear in * the head of the rule unbound. Therefore we DO NOT bind those * variables here in the test case and they will be represented * as ZERO (0L) in the justifications index and interpreted as * wildcards. */ // bindingSet.set(Var.var("u"), new Constant<IV>(U)); bindingSet.set(Var.var("a"), new Constant<IV>(A)); // bindingSet.set(Var.var("y"), new Constant<IV>(Y)); final ISolution solution = new Solution(joinNexus, rule, bindingSet); /* * Verify the justification that will be built from that * solution. */ { jst = new Justification(solution); /* * Verify the bindings on the head of the rule as * represented by the justification. */ assertEquals(expectedEntailment, jst.getHead()); /* * Verify the bindings on the tail of the rule as * represented by the justification. Again, note that the * variables that do not appear in the head of the rule are * left unbound for rdfs1 as a side-effect of evaluation * using a distinct term scan. */ final SPO[] expectedTail = new SPO[] { // new SPO(NULL, A, NULL, StatementEnum.Inferred) // }; if (!Arrays.equals(expectedTail, jst.getTail())) { fail("Expected: " + Arrays.toString(expectedTail) + ", but actual: " + jst); } } // insert solution into the buffer. insertBuffer.add(new ISolution[] {solution}); } // SPOAssertionBuffer buf = new SPOAssertionBuffer(store, store, // null/* filter */, 100/* capacity */, true/* justified */); // // assertTrue(buf.add(head, jst)); // no justifications before hand. assertEquals(0L, store.getSPORelation().getJustificationIndex().rangeCount()); // flush the buffer. assertEquals(1L, insertBuffer.flush()); // one justification afterwards. assertEquals(1L, store.getSPORelation().getJustificationIndex().rangeCount()); /* * verify read back from the index. */ { final ITupleIterator<Justification> itr = store.getSPORelation().getJustificationIndex().rangeIterator(); while (itr.hasNext()) { final ITuple<Justification> tuple = itr.next(); // de-serialize the justification from the key. final Justification tmp = tuple.getObject(); // verify the same. assertEquals(jst, tmp); // no more justifications in the index. assertFalse(itr.hasNext()); } } /* * test iterator with a single justification. */ { final FullyBufferedJustificationIterator itr = new FullyBufferedJustificationIterator(store, expectedEntailment); assertTrue(itr.hasNext()); final Justification tmp = itr.next(); assertEquals(jst, tmp); } // an empty focusStore. final TempTripleStore focusStore = new TempTripleStore(store.getIndexManager().getTempStore(), store.getProperties(), store); try { /* * The inference (A rdf:type rdf:property) is grounded by the * explicit statement (U A Y). */ assertTrue( Justification.isGrounded( inf, focusStore, store, expectedEntailment, false /* testHead */, true /* testFocusStore */, new VisitedSPOSet(focusStore.getIndexManager()))); // add the statement (U A Y) to the focusStore. focusStore.addStatements( new SPO[] { // new SPO(U, A, Y, StatementEnum.Explicit) // }, // 1); /* * The inference is no longer grounded since we have declared * that we are also retracting its grounds. */ assertFalse( Justification.isGrounded( inf, focusStore, store, expectedEntailment, false /* testHead */, true /* testFocusStore */, new VisitedSPOSet(focusStore.getIndexManager()))); } finally { /* * Destroy the temp kb, but not the backing TemporaryStore. That * will be destroyed when we destroy the IndexManager associated * with the main store (below). */ focusStore.destroy(); } /* * remove the justified statements. */ assertEquals( 1L, store .getAccessPath(expectedEntailment.s, expectedEntailment.p, expectedEntailment.o) .removeAll()); /* * verify that the justification for that statement is gone. */ { final ITupleIterator<?> itr = store.getSPORelation().getJustificationIndex().rangeIterator(); assertFalse(itr.hasNext()); } } finally { store.__tearDownUnitTest(); } }
public void mapOverShards(final Bundle<F>[] bundles) { /* * Sort the binding sets in the chunk by the fromKey associated with * each asBound predicate. */ Arrays.sort(bundles); // The most recently discovered locator. PartitionLocator current = null; // The key order for [current] IKeyOrder<?> currentKeyOrder = null; // // The list of binding sets which are bound for the current locator. // List<IBindingSet> list = new LinkedList<IBindingSet>(); final Iterator<Bundle<F>> bitr = Arrays.asList(bundles).iterator(); while (bitr.hasNext()) { final Bundle<F> bundle = bitr.next(); if (current != null && currentKeyOrder == bundle.keyOrder // same s/o index && BytesUtil.rangeCheck( bundle.fromKey, current.getLeftSeparatorKey(), current.getRightSeparatorKey()) && BytesUtil.rangeCheck( bundle.toKey, current.getLeftSeparatorKey(), current.getRightSeparatorKey())) { /* * Optimization when the bundle fits inside of the last index * partition scanned (this optimization is only possible when * the asBound predicate will be mapped onto a single index * partition, but this is a very common case since we try to * choose selective indices for access paths). * * Note: The bundle MUST be for the scale-out index associated * with the last PartitionLocator. We enforce this constraint by * tracking the IKeyOrder for the last PartitionLocator and * verifying that the Bundle is associated with the same * IKeyOrder. * * Note: Bundle#compareTo() is written to group together the * [Bundle]s first by their IKeyOrder and then by their fromKey. * That provides the maximum possibility of reuse of the last * PartitionLocator. It also provides ordered within scale-out * index partition locator scans. */ final IBuffer<IBindingSet[]> sink = op.getBuffer(current); sink.add(new IBindingSet[] {bundle.bindingSet}); continue; } /* * Locator scan for the index partitions for that predicate as * bound. */ final Iterator<PartitionLocator> itr = op.locatorScan(bundle.keyOrder, bundle.fromKey, bundle.toKey); // Clear the old partition locator. current = null; // Update key order for the partition that we are scanning. currentKeyOrder = bundle.keyOrder; // Scan locators. while (itr.hasNext()) { final PartitionLocator locator = current = itr.next(); if (log.isTraceEnabled()) log.trace( "adding bindingSet to buffer" + ": asBound=" + bundle.asBound + ", partitionId=" + locator.getPartitionId() + ", dataService=" + locator.getDataServiceUUID() + ", bindingSet=" + bundle.bindingSet); final IBuffer<IBindingSet[]> sink = op.getBuffer(locator); sink.add(new IBindingSet[] {bundle.bindingSet}); } } }