@Override public double getUnnormalizedLogProbability(Assignment assignment) { Preconditions.checkArgument(assignment.containsAll(getVars().getVariableNumsArray())); Tensor inputFeatureVector = (Tensor) assignment.getValue(getInputVariable().getOnlyVariableNum()); if (conditionalVars.size() == 0) { // No normalization for any conditioned-on variables. This case // allows a more efficient implementation than the default // in ClassifierFactor. VariableNumMap outputVars = getOutputVariables(); Tensor outputTensor = SparseTensor.singleElement( outputVars.getVariableNumsArray(), outputVars.getVariableSizes(), outputVars.assignmentToIntArray(assignment), 1.0); Tensor featureIndicator = outputTensor.outerProduct(inputFeatureVector); return logWeights.innerProduct(featureIndicator).getByDimKey(); } else { // Default to looking up the answer in the output log probabilities int[] outputIndexes = getOutputVariables().assignmentToIntArray(assignment); Tensor logProbs = getOutputLogProbTensor(inputFeatureVector); return logProbs.getByDimKey(outputIndexes); } }
@Override protected Tensor getOutputLogProbTensor(Tensor inputFeatureVector) { Tensor logProbs = logWeights.innerProduct(inputFeatureVector.relabelDimensions(inputVarNums)); if (conditionalVars.size() > 0) { Tensor probs = logProbs.elementwiseExp(); Tensor normalizingConstants = probs.sumOutDimensions(conditionalVars.getVariableNumsArray()); logProbs = probs.elementwiseProduct(normalizingConstants.elementwiseInverse()).elementwiseLog(); } return logProbs; }