/**
 * Instances of class <code>Short</code> represent primitive <code>short</code> values.
 *
 * <p>Additionally, this class provides various helper functions and variables related to shorts.
 *
 * @author Paul Fisher
 * @author John Keiser
 * @author Eric Blake ([email protected])
 * @since 1.1
 * @status updated to 1.4
 */
public final class Short extends Number implements Comparable {
  /** Compatible with JDK 1.1+. */
  private static final long serialVersionUID = 7515723908773894738L;

  /** The minimum value a <code>short</code> can represent is -32768 (or -2<sup>15</sup>). */
  public static final short MIN_VALUE = -32768;

  /** The minimum value a <code>short</code> can represent is 32767 (or 2<sup>15</sup>). */
  public static final short MAX_VALUE = 32767;

  /** The primitive type <code>short</code> is represented by this <code>Class</code> object. */
  public static final Class TYPE = VMClassLoader.getPrimitiveClass('S');

  /**
   * The immutable value of this Short.
   *
   * @serial the wrapped short
   */
  private final short value;

  /**
   * Create a <code>Short</code> object representing the value of the <code>short</code> argument.
   *
   * @param value the value to use
   */
  public Short(short value) {
    this.value = value;
  }

  /**
   * Create a <code>Short</code> object representing the value of the argument after conversion to a
   * <code>short</code>.
   *
   * @param s the string to convert
   * @throws NumberFormatException if the String cannot be parsed
   */
  public Short(String s) {
    value = parseShort(s, 10);
  }

  /**
   * Converts the <code>short</code> to a <code>String</code> and assumes a radix of 10.
   *
   * @param s the <code>short</code> to convert to <code>String</code>
   * @return the <code>String</code> representation of the argument
   */
  public static String toString(short s) {
    return String.valueOf(s);
  }

  /**
   * Converts the specified <code>String</code> into a <code>short</code>. This function assumes a
   * radix of 10.
   *
   * @param s the <code>String</code> to convert
   * @return the <code>short</code> value of <code>s</code>
   * @throws NumberFormatException if <code>s</code> cannot be parsed as a <code>short</code>
   */
  public static short parseShort(String s) {
    return parseShort(s, 10);
  }

  /**
   * Converts the specified <code>String</code> into a <code>short</code> using the specified radix
   * (base). The string must not be <code>null</code> or empty. It may begin with an optional '-',
   * which will negate the answer, provided that there are also valid digits. Each digit is parsed
   * as if by <code>Character.digit(d, radix)</code>, and must be in the range <code>0</code> to
   * <code>radix - 1</code>. Finally, the result must be within <code>MIN_VALUE</code> to <code>
   * MAX_VALUE</code>, inclusive. Unlike Double.parseDouble, you may not have a leading '+'.
   *
   * @param s the <code>String</code> to convert
   * @param radix the radix (base) to use in the conversion
   * @return the <code>String</code> argument converted to <code>short</code>
   * @throws NumberFormatException if <code>s</code> cannot be parsed as a <code>short</code>
   */
  public static short parseShort(String s, int radix) {
    int i = Integer.parseInt(s, radix, false);
    if ((short) i != i) throw new NumberFormatException();
    return (short) i;
  }

  /**
   * Creates a new <code>Short</code> object using the <code>String</code> and specified radix
   * (base).
   *
   * @param s the <code>String</code> to convert
   * @param radix the radix (base) to convert with
   * @return the new <code>Short</code>
   * @throws NumberFormatException if <code>s</code> cannot be parsed as a <code>short</code>
   * @see #parseShort(String, int)
   */
  public static Short valueOf(String s, int radix) {
    return new Short(parseShort(s, radix));
  }

  /**
   * Creates a new <code>Short</code> object using the <code>String</code>, assuming a radix of 10.
   *
   * @param s the <code>String</code> to convert
   * @return the new <code>Short</code>
   * @throws NumberFormatException if <code>s</code> cannot be parsed as a <code>short</code>
   * @see #Short(String)
   * @see #parseShort(String)
   */
  public static Short valueOf(String s) {
    return new Short(parseShort(s, 10));
  }

  /**
   * Convert the specified <code>String</code> into a <code>Short</code>. The <code>String</code>
   * may represent decimal, hexadecimal, or octal numbers.
   *
   * <p>The extended BNF grammar is as follows:<br>
   *
   * <pre>
   * <em>DecodableString</em>:
   *      ( [ <code>-</code> ] <em>DecimalNumber</em> )
   *    | ( [ <code>-</code> ] ( <code>0x</code> | <code>0X</code>
   *              | <code>#</code> ) <em>HexDigit</em> { <em>HexDigit</em> } )
   *    | ( [ <code>-</code> ] <code>0</code> { <em>OctalDigit</em> } )
   * <em>DecimalNumber</em>:
   *        <em>DecimalDigit except '0'</em> { <em>DecimalDigit</em> }
   * <em>DecimalDigit</em>:
   *        <em>Character.digit(d, 10) has value 0 to 9</em>
   * <em>OctalDigit</em>:
   *        <em>Character.digit(d, 8) has value 0 to 7</em>
   * <em>DecimalDigit</em>:
   *        <em>Character.digit(d, 16) has value 0 to 15</em>
   * </pre>
   *
   * Finally, the value must be in the range <code>MIN_VALUE</code> to <code>MAX_VALUE</code>, or an
   * exception is thrown.
   *
   * @param s the <code>String</code> to interpret
   * @return the value of the String as a <code>Short</code>
   * @throws NumberFormatException if <code>s</code> cannot be parsed as a <code>short</code>
   * @throws NullPointerException if <code>s</code> is null
   * @see Integer#decode(String)
   */
  public static Short decode(String s) {
    int i = Integer.parseInt(s, 10, true);
    if ((short) i != i) throw new NumberFormatException();
    return new Short((short) i);
  }

  /**
   * Return the value of this <code>Short</code> as a <code>byte</code>.
   *
   * @return the byte value
   */
  public byte byteValue() {
    return (byte) value;
  }

  /**
   * Return the value of this <code>Short</code>.
   *
   * @return the short value
   */
  public short shortValue() {
    return value;
  }

  /**
   * Return the value of this <code>Short</code> as an <code>int</code>.
   *
   * @return the int value
   */
  public int intValue() {
    return value;
  }

  /**
   * Return the value of this <code>Short</code> as a <code>long</code>.
   *
   * @return the long value
   */
  public long longValue() {
    return value;
  }

  /**
   * Return the value of this <code>Short</code> as a <code>float</code>.
   *
   * @return the float value
   */
  public float floatValue() {
    return value;
  }

  /**
   * Return the value of this <code>Short</code> as a <code>double</code>.
   *
   * @return the double value
   */
  public double doubleValue() {
    return value;
  }

  /**
   * Converts the <code>Short</code> value to a <code>String</code> and assumes a radix of 10.
   *
   * @return the <code>String</code> representation of this <code>Short</code>
   */
  public String toString() {
    return String.valueOf(value);
  }

  /**
   * Return a hashcode representing this Object. <code>Short</code>'s hash code is simply its value.
   *
   * @return this Object's hash code
   */
  public int hashCode() {
    return value;
  }

  /**
   * Returns <code>true</code> if <code>obj</code> is an instance of <code>Short</code> and
   * represents the same short value.
   *
   * @param obj the object to compare
   * @return whether these Objects are semantically equal
   */
  public boolean equals(Object obj) {
    return obj instanceof Short && value == ((Short) obj).value;
  }

  /**
   * Compare two Shorts numerically by comparing their <code>short</code> values. The result is
   * positive if the first is greater, negative if the second is greater, and 0 if the two are
   * equal.
   *
   * @param s the Short to compare
   * @return the comparison
   * @since 1.2
   */
  public int compareTo(Short s) {
    return value - s.value;
  }

  /**
   * Behaves like <code>compareTo(Short)</code> unless the Object is not a <code>Short</code>.
   *
   * @param o the object to compare
   * @return the comparison
   * @throws ClassCastException if the argument is not a <code>Short</code>
   * @see #compareTo(Short)
   * @see Comparable
   * @since 1.2
   */
  public int compareTo(Object o) {
    return compareTo((Short) o);
  }
}
/**
 * Instances of class <code>Integer</code> represent primitive <code>int</code> values.
 *
 * <p>Additionally, this class provides various helper functions and variables related to ints.
 *
 * @author Paul Fisher
 * @author John Keiser
 * @author Warren Levy
 * @author Eric Blake ([email protected])
 * @author Tom Tromey ([email protected])
 * @author Andrew John Hughes ([email protected])
 * @author Ian Rogers
 * @since 1.0
 * @status updated to 1.5
 */
public final class Integer extends Number implements Comparable<Integer> {
  /** Compatible with JDK 1.0.2+. */
  private static final long serialVersionUID = 1360826667806852920L;

  /** The minimum value an <code>int</code> can represent is -2147483648 (or -2<sup>31</sup>). */
  public static final int MIN_VALUE = 0x80000000;

  /** The maximum value an <code>int</code> can represent is 2147483647 (or 2<sup>31</sup> - 1). */
  public static final int MAX_VALUE = 0x7fffffff;

  /**
   * The primitive type <code>int</code> is represented by this <code>Class</code> object.
   *
   * @since 1.1
   */
  public static final Class<Integer> TYPE = (Class<Integer>) VMClassLoader.getPrimitiveClass('I');

  /**
   * The number of bits needed to represent an <code>int</code>.
   *
   * @since 1.5
   */
  public static final int SIZE = 32;

  // This caches some Integer values, and is used by boxing
  // conversions via valueOf().  We must cache at least -128..127;
  // these constants control how much we actually cache.
  private static final int MIN_CACHE = -128;
  private static final int MAX_CACHE = 127;
  private static final Integer[] intCache = new Integer[MAX_CACHE - MIN_CACHE + 1];

  static {
    for (int i = MIN_CACHE; i <= MAX_CACHE; i++) intCache[i - MIN_CACHE] = new Integer(i);
  }

  /**
   * The immutable value of this Integer.
   *
   * @serial the wrapped int
   */
  private final int value;

  /**
   * Create an <code>Integer</code> object representing the value of the <code>int</code> argument.
   *
   * @param value the value to use
   */
  public Integer(int value) {
    this.value = value;
  }

  /**
   * Create an <code>Integer</code> object representing the value of the argument after conversion
   * to an <code>int</code>.
   *
   * @param s the string to convert
   * @throws NumberFormatException if the String does not contain an int
   * @see #valueOf(String)
   */
  public Integer(String s) {
    value = parseInt(s, 10, false);
  }

  /**
   * Return the size of a string large enough to hold the given number
   *
   * @param num the number we want the string length for (must be positive)
   * @param radix the radix (base) that will be used for the string
   * @return a size sufficient for a string of num
   */
  private static int stringSize(int num, int radix) {
    int exp;
    if (radix < 4) {
      exp = 1;
    } else if (radix < 8) {
      exp = 2;
    } else if (radix < 16) {
      exp = 3;
    } else if (radix < 32) {
      exp = 4;
    } else {
      exp = 5;
    }
    int size = 0;
    do {
      num >>>= exp;
      size++;
    } while (num != 0);
    return size;
  }

  /**
   * Converts the <code>int</code> to a <code>String</code> using the specified radix (base). If the
   * radix exceeds <code>Character.MIN_RADIX</code> or <code>Character.MAX_RADIX</code>, 10 is used
   * instead. If the result is negative, the leading character is '-' ('\\u002D'). The remaining
   * characters come from <code>Character.forDigit(digit, radix)</code> ('0'-'9','a'-'z').
   *
   * @param num the <code>int</code> to convert to <code>String</code>
   * @param radix the radix (base) to use in the conversion
   * @return the <code>String</code> representation of the argument
   */
  public static String toString(int num, int radix) {
    if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX) radix = 10;

    // Is the value negative?
    boolean isNeg = num < 0;

    // Is the string a single character?
    if (!isNeg && num < radix) return new String(digits, num, 1, true);

    // Compute string size and allocate buffer
    // account for a leading '-' if the value is negative
    int size;
    int i;
    char[] buffer;
    if (isNeg) {
      num = -num;

      // When the value is MIN_VALUE, it overflows when made positive
      if (num < 0) {
        i = size = stringSize(MAX_VALUE, radix) + 2;
        buffer = new char[size];
        buffer[--i] = digits[(int) (-(num + radix) % radix)];
        num = -(num / radix);
      } else {
        i = size = stringSize(num, radix) + 1;
        buffer = new char[size];
      }
    } else {
      i = size = stringSize(num, radix);
      buffer = new char[size];
    }

    do {
      buffer[--i] = digits[num % radix];
      num /= radix;
    } while (num > 0);

    if (isNeg) buffer[--i] = '-';

    // Package constructor avoids an array copy.
    return new String(buffer, i, size - i, true);
  }

  /**
   * Converts the <code>int</code> to a <code>String</code> assuming it is unsigned in base 16.
   *
   * @param i the <code>int</code> to convert to <code>String</code>
   * @return the <code>String</code> representation of the argument
   */
  public static String toHexString(int i) {
    return toUnsignedString(i, 4);
  }

  /**
   * Converts the <code>int</code> to a <code>String</code> assuming it is unsigned in base 8.
   *
   * @param i the <code>int</code> to convert to <code>String</code>
   * @return the <code>String</code> representation of the argument
   */
  public static String toOctalString(int i) {
    return toUnsignedString(i, 3);
  }

  /**
   * Converts the <code>int</code> to a <code>String</code> assuming it is unsigned in base 2.
   *
   * @param i the <code>int</code> to convert to <code>String</code>
   * @return the <code>String</code> representation of the argument
   */
  public static String toBinaryString(int i) {
    return toUnsignedString(i, 1);
  }

  /**
   * Converts the <code>int</code> to a <code>String</code> and assumes a radix of 10.
   *
   * @param i the <code>int</code> to convert to <code>String</code>
   * @return the <code>String</code> representation of the argument
   * @see #toString(int, int)
   */
  public static String toString(int i) {
    // This is tricky: in libgcj, String.valueOf(int) is a fast native
    // implementation.  In Classpath it just calls back to
    // Integer.toString(int, int).
    return String.valueOf(i);
  }

  /**
   * Converts the specified <code>String</code> into an <code>int</code> using the specified radix
   * (base). The string must not be <code>null</code> or empty. It may begin with an optional '-',
   * which will negate the answer, provided that there are also valid digits. Each digit is parsed
   * as if by <code>Character.digit(d, radix)</code>, and must be in the range <code>0</code> to
   * <code>radix - 1</code>. Finally, the result must be within <code>MIN_VALUE</code> to <code>
   * MAX_VALUE</code>, inclusive. Unlike Double.parseDouble, you may not have a leading '+'.
   *
   * @param str the <code>String</code> to convert
   * @param radix the radix (base) to use in the conversion
   * @return the <code>String</code> argument converted to <code>int</code>
   * @throws NumberFormatException if <code>s</code> cannot be parsed as an <code>int</code>
   */
  public static int parseInt(String str, int radix) {
    return parseInt(str, radix, false);
  }

  /**
   * Converts the specified <code>String</code> into an <code>int</code>. This function assumes a
   * radix of 10.
   *
   * @param s the <code>String</code> to convert
   * @return the <code>int</code> value of <code>s</code>
   * @throws NumberFormatException if <code>s</code> cannot be parsed as an <code>int</code>
   * @see #parseInt(String, int)
   */
  public static int parseInt(String s) {
    return parseInt(s, 10, false);
  }

  /**
   * Creates a new <code>Integer</code> object using the <code>String</code> and specified radix
   * (base).
   *
   * @param s the <code>String</code> to convert
   * @param radix the radix (base) to convert with
   * @return the new <code>Integer</code>
   * @throws NumberFormatException if <code>s</code> cannot be parsed as an <code>int</code>
   * @see #parseInt(String, int)
   */
  public static Integer valueOf(String s, int radix) {
    return valueOf(parseInt(s, radix, false));
  }

  /**
   * Creates a new <code>Integer</code> object using the <code>String</code>, assuming a radix of
   * 10.
   *
   * @param s the <code>String</code> to convert
   * @return the new <code>Integer</code>
   * @throws NumberFormatException if <code>s</code> cannot be parsed as an <code>int</code>
   * @see #Integer(String)
   * @see #parseInt(String)
   */
  public static Integer valueOf(String s) {
    return valueOf(parseInt(s, 10, false));
  }

  /**
   * Returns an <code>Integer</code> object wrapping the value. In contrast to the <code>Integer
   * </code> constructor, this method will cache some values. It is used by boxing conversion.
   *
   * @param val the value to wrap
   * @return the <code>Integer</code>
   */
  public static Integer valueOf(int val) {
    if (val < MIN_CACHE || val > MAX_CACHE) return new Integer(val);
    else return intCache[val - MIN_CACHE];
  }

  /**
   * Return the value of this <code>Integer</code> as a <code>byte</code>.
   *
   * @return the byte value
   */
  public byte byteValue() {
    return (byte) value;
  }

  /**
   * Return the value of this <code>Integer</code> as a <code>short</code>.
   *
   * @return the short value
   */
  public short shortValue() {
    return (short) value;
  }

  /**
   * Return the value of this <code>Integer</code>.
   *
   * @return the int value
   */
  public int intValue() {
    return value;
  }

  /**
   * Return the value of this <code>Integer</code> as a <code>long</code>.
   *
   * @return the long value
   */
  public long longValue() {
    return value;
  }

  /**
   * Return the value of this <code>Integer</code> as a <code>float</code>.
   *
   * @return the float value
   */
  public float floatValue() {
    return value;
  }

  /**
   * Return the value of this <code>Integer</code> as a <code>double</code>.
   *
   * @return the double value
   */
  public double doubleValue() {
    return value;
  }

  /**
   * Converts the <code>Integer</code> value to a <code>String</code> and assumes a radix of 10.
   *
   * @return the <code>String</code> representation
   */
  public String toString() {
    return String.valueOf(value);
  }

  /**
   * Return a hashcode representing this Object. <code>Integer</code>'s hash code is simply its
   * value.
   *
   * @return this Object's hash code
   */
  public int hashCode() {
    return value;
  }

  /**
   * Returns <code>true</code> if <code>obj</code> is an instance of <code>Integer</code> and
   * represents the same int value.
   *
   * @param obj the object to compare
   * @return whether these Objects are semantically equal
   */
  public boolean equals(Object obj) {
    return obj instanceof Integer && value == ((Integer) obj).value;
  }

  /**
   * Get the specified system property as an <code>Integer</code>. The <code>decode()</code> method
   * will be used to interpret the value of the property.
   *
   * @param nm the name of the system property
   * @return the system property as an <code>Integer</code>, or null if the property is not found or
   *     cannot be decoded
   * @throws SecurityException if accessing the system property is forbidden
   * @see System#getProperty(String)
   * @see #decode(String)
   */
  public static Integer getInteger(String nm) {
    return getInteger(nm, null);
  }

  /**
   * Get the specified system property as an <code>Integer</code>, or use a default <code>int</code>
   * value if the property is not found or is not decodable. The <code>decode()</code> method will
   * be used to interpret the value of the property.
   *
   * @param nm the name of the system property
   * @param val the default value
   * @return the value of the system property, or the default
   * @throws SecurityException if accessing the system property is forbidden
   * @see System#getProperty(String)
   * @see #decode(String)
   */
  public static Integer getInteger(String nm, int val) {
    Integer result = getInteger(nm, null);
    return result == null ? valueOf(val) : result;
  }

  /**
   * Get the specified system property as an <code>Integer</code>, or use a default <code>Integer
   * </code> value if the property is not found or is not decodable. The <code>decode()</code>
   * method will be used to interpret the value of the property.
   *
   * @param nm the name of the system property
   * @param def the default value
   * @return the value of the system property, or the default
   * @throws SecurityException if accessing the system property is forbidden
   * @see System#getProperty(String)
   * @see #decode(String)
   */
  public static Integer getInteger(String nm, Integer def) {
    if (nm == null || "".equals(nm)) return def;
    nm = System.getProperty(nm);
    if (nm == null) return def;
    try {
      return decode(nm);
    } catch (NumberFormatException e) {
      return def;
    }
  }

  /**
   * Convert the specified <code>String</code> into an <code>Integer</code>. The <code>String</code>
   * may represent decimal, hexadecimal, or octal numbers.
   *
   * <p>The extended BNF grammar is as follows:<br>
   *
   * <pre>
   * <em>DecodableString</em>:
   *      ( [ <code>-</code> ] <em>DecimalNumber</em> )
   *    | ( [ <code>-</code> ] ( <code>0x</code> | <code>0X</code>
   *              | <code>#</code> ) <em>HexDigit</em> { <em>HexDigit</em> } )
   *    | ( [ <code>-</code> ] <code>0</code> { <em>OctalDigit</em> } )
   * <em>DecimalNumber</em>:
   *        <em>DecimalDigit except '0'</em> { <em>DecimalDigit</em> }
   * <em>DecimalDigit</em>:
   *        <em>Character.digit(d, 10) has value 0 to 9</em>
   * <em>OctalDigit</em>:
   *        <em>Character.digit(d, 8) has value 0 to 7</em>
   * <em>DecimalDigit</em>:
   *        <em>Character.digit(d, 16) has value 0 to 15</em>
   * </pre>
   *
   * Finally, the value must be in the range <code>MIN_VALUE</code> to <code>MAX_VALUE</code>, or an
   * exception is thrown.
   *
   * @param str the <code>String</code> to interpret
   * @return the value of the String as an <code>Integer</code>
   * @throws NumberFormatException if <code>s</code> cannot be parsed as a <code>int</code>
   * @throws NullPointerException if <code>s</code> is null
   * @since 1.2
   */
  public static Integer decode(String str) {
    return valueOf(parseInt(str, 10, true));
  }

  /**
   * Compare two Integers numerically by comparing their <code>int</code> values. The result is
   * positive if the first is greater, negative if the second is greater, and 0 if the two are
   * equal.
   *
   * @param i the Integer to compare
   * @return the comparison
   * @since 1.2
   */
  public int compareTo(Integer i) {
    if (value == i.value) return 0;
    // Returns just -1 or 1 on inequality; doing math might overflow.
    return value > i.value ? 1 : -1;
  }

  /**
   * Return the number of bits set in x.
   *
   * @param x value to examine
   * @since 1.5
   */
  public static int bitCount(int x) {
    // Successively collapse alternating bit groups into a sum.
    x = ((x >> 1) & 0x55555555) + (x & 0x55555555);
    x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
    x = ((x >> 4) & 0x0f0f0f0f) + (x & 0x0f0f0f0f);
    x = ((x >> 8) & 0x00ff00ff) + (x & 0x00ff00ff);
    return ((x >> 16) & 0x0000ffff) + (x & 0x0000ffff);
  }

  /**
   * Rotate x to the left by distance bits.
   *
   * @param x the value to rotate
   * @param distance the number of bits by which to rotate
   * @since 1.5
   */
  public static int rotateLeft(int x, int distance) {
    // This trick works because the shift operators implicitly mask
    // the shift count.
    return (x << distance) | (x >>> -distance);
  }

  /**
   * Rotate x to the right by distance bits.
   *
   * @param x the value to rotate
   * @param distance the number of bits by which to rotate
   * @since 1.5
   */
  public static int rotateRight(int x, int distance) {
    // This trick works because the shift operators implicitly mask
    // the shift count.
    return (x << -distance) | (x >>> distance);
  }

  /**
   * Find the highest set bit in value, and return a new value with only that bit set.
   *
   * @param value the value to examine
   * @since 1.5
   */
  public static int highestOneBit(int value) {
    value |= value >>> 1;
    value |= value >>> 2;
    value |= value >>> 4;
    value |= value >>> 8;
    value |= value >>> 16;
    return value ^ (value >>> 1);
  }

  /**
   * Return the number of leading zeros in value.
   *
   * @param value the value to examine
   * @since 1.5
   */
  public static int numberOfLeadingZeros(int value) {
    value |= value >>> 1;
    value |= value >>> 2;
    value |= value >>> 4;
    value |= value >>> 8;
    value |= value >>> 16;
    return bitCount(~value);
  }

  /**
   * Find the lowest set bit in value, and return a new value with only that bit set.
   *
   * @param value the value to examine
   * @since 1.5
   */
  public static int lowestOneBit(int value) {
    // Classic assembly trick.
    return value & -value;
  }

  /**
   * Find the number of trailing zeros in value.
   *
   * @param value the value to examine
   * @since 1.5
   */
  public static int numberOfTrailingZeros(int value) {
    return bitCount((value & -value) - 1);
  }

  /**
   * Return 1 if x is positive, -1 if it is negative, and 0 if it is zero.
   *
   * @param x the value to examine
   * @since 1.5
   */
  public static int signum(int x) {
    return (x >> 31) | (-x >>> 31);

    // The LHS propagates the sign bit through every bit in the word;
    // if X < 0, every bit is set to 1, else 0.  if X > 0, the RHS
    // negates x and shifts the resulting 1 in the sign bit to the
    // LSB, leaving every other bit 0.

    // Hacker's Delight, Section 2-7
  }

  /**
   * Reverse the bytes in val.
   *
   * @since 1.5
   */
  public static int reverseBytes(int val) {
    return (((val >> 24) & 0xff)
        | ((val >> 8) & 0xff00)
        | ((val << 8) & 0xff0000)
        | ((val << 24) & 0xff000000));
  }

  /**
   * Reverse the bits in val.
   *
   * @since 1.5
   */
  public static int reverse(int val) {
    // Successively swap alternating bit groups.
    val = ((val >> 1) & 0x55555555) + ((val << 1) & ~0x55555555);
    val = ((val >> 2) & 0x33333333) + ((val << 2) & ~0x33333333);
    val = ((val >> 4) & 0x0f0f0f0f) + ((val << 4) & ~0x0f0f0f0f);
    val = ((val >> 8) & 0x00ff00ff) + ((val << 8) & ~0x00ff00ff);
    return ((val >> 16) & 0x0000ffff) + ((val << 16) & ~0x0000ffff);
  }

  /**
   * Helper for converting unsigned numbers to String.
   *
   * @param num the number
   * @param exp log2(digit) (ie. 1, 3, or 4 for binary, oct, hex)
   */
  // Package visible for use by Long.
  static String toUnsignedString(int num, int exp) {
    // Compute string length
    int size = 1;
    int copy = num >>> exp;
    while (copy != 0) {
      size++;
      copy >>>= exp;
    }
    // Quick path for single character strings
    if (size == 1) return new String(digits, num, 1, true);

    // Encode into buffer
    int mask = (1 << exp) - 1;
    char[] buffer = new char[size];
    int i = size;
    do {
      buffer[--i] = digits[num & mask];
      num >>>= exp;
    } while (num != 0);

    // Package constructor avoids an array copy.
    return new String(buffer, i, size - i, true);
  }

  /**
   * Helper for parsing ints, used by Integer, Short, and Byte.
   *
   * @param str the string to parse
   * @param radix the radix to use, must be 10 if decode is true
   * @param decode if called from decode
   * @return the parsed int value
   * @throws NumberFormatException if there is an error
   * @throws NullPointerException if decode is true and str if null
   * @see #parseInt(String, int)
   * @see #decode(String)
   * @see Byte#parseByte(String, int)
   * @see Short#parseShort(String, int)
   */
  static int parseInt(String str, int radix, boolean decode) {
    if (!decode && str == null) throw new NumberFormatException();
    int index = 0;
    int len = str.length();
    boolean isNeg = false;
    if (len == 0) throw new NumberFormatException("string length is null");
    int ch = str.charAt(index);
    if (ch == '-') {
      if (len == 1) throw new NumberFormatException("pure '-'");
      isNeg = true;
      ch = str.charAt(++index);
    } else if (ch == '+') {
      if (len == 1) throw new NumberFormatException("pure '+'");
      ch = str.charAt(++index);
    }
    if (decode) {
      if (ch == '0') {
        if (++index == len) return 0;
        if ((str.charAt(index) & ~('x' ^ 'X')) == 'X') {
          radix = 16;
          index++;
        } else radix = 8;
      } else if (ch == '#') {
        radix = 16;
        index++;
      }
    }
    if (index == len) throw new NumberFormatException("non terminated number: " + str);

    int max = MAX_VALUE / radix;
    // We can't directly write `max = (MAX_VALUE + 1) / radix'.
    // So instead we fake it.
    if (isNeg && MAX_VALUE % radix == radix - 1) ++max;

    int val = 0;
    while (index < len) {
      if (val < 0 || val > max)
        throw new NumberFormatException("number overflow (pos=" + index + ") : " + str);

      ch = Character.digit(str.charAt(index++), radix);
      val = val * radix + ch;
      if (ch < 0 || (val < 0 && (!isNeg || val != MIN_VALUE)))
        throw new NumberFormatException("invalid character at position " + index + " in " + str);
    }
    return isNeg ? -val : val;
  }
}