/**
   * Constructor creates an instance to be used for fill operations.
   *
   * @param shading the shading type to be used
   * @param colorModel the color model to be used
   * @param xform transformation for user to device space
   * @param matrix the pattern matrix concatenated with that of the parent content stream
   * @param deviceBounds the bounds of the area to paint, in device units
   * @throws IOException if there is an error getting the color space or doing color conversion.
   */
  public AxialShadingContext(
      PDShadingType2 shading,
      ColorModel colorModel,
      AffineTransform xform,
      Matrix matrix,
      Rectangle deviceBounds)
      throws IOException {
    super(shading, colorModel, xform, matrix);
    this.axialShadingType = shading;
    coords = shading.getCoords().toFloatArray();

    // domain values
    if (shading.getDomain() != null) {
      domain = shading.getDomain().toFloatArray();
    } else {
      // set default values
      domain = new float[] {0, 1};
    }
    // extend values
    COSArray extendValues = shading.getExtend();
    if (shading.getExtend() != null) {
      extend = new boolean[2];
      extend[0] = ((COSBoolean) extendValues.get(0)).getValue();
      extend[1] = ((COSBoolean) extendValues.get(1)).getValue();
    } else {
      // set default values
      extend = new boolean[] {false, false};
    }
    // calculate some constants to be used in getRaster
    x1x0 = coords[2] - coords[0];
    y1y0 = coords[3] - coords[1];
    d1d0 = domain[1] - domain[0];
    denom = Math.pow(x1x0, 2) + Math.pow(y1y0, 2);

    try {
      // get inverse transform to be independent of current user / device space
      // when handling actual pixels in getRaster()
      rat = matrix.createAffineTransform().createInverse();
      rat.concatenate(xform.createInverse());
    } catch (NoninvertibleTransformException ex) {
      LOG.error(ex, ex);
    }

    // shading space -> device space
    AffineTransform shadingToDevice = (AffineTransform) xform.clone();
    shadingToDevice.concatenate(matrix.createAffineTransform());

    // worst case for the number of steps is opposite diagonal corners, so use that
    double dist =
        Math.sqrt(
            Math.pow(deviceBounds.getMaxX() - deviceBounds.getMinX(), 2)
                + Math.pow(deviceBounds.getMaxY() - deviceBounds.getMinY(), 2));
    factor = (int) Math.ceil(dist);

    // build the color table for the given number of steps
    colorTable = calcColorTable();
  }
 /**
  * Calculate the color on the axial line and store them in an array.
  *
  * @return an array, index denotes the relative position, the corresponding value is the color on
  *     the axial line
  * @throws IOException if the color conversion fails.
  */
 private int[] calcColorTable() throws IOException {
   int[] map = new int[factor + 1];
   if (factor == 0 || d1d0 == 0) {
     float[] values = axialShadingType.evalFunction(domain[0]);
     map[0] = convertToRGB(values);
   } else {
     for (int i = 0; i <= factor; i++) {
       float t = domain[0] + d1d0 * i / factor;
       float[] values = axialShadingType.evalFunction(t);
       map[i] = convertToRGB(values);
     }
   }
   return map;
 }
 /**
  * Returns the function.
  *
  * @throws java.io.IOException if we were not able to create the function.
  */
 public PDFunction getFunction() throws IOException {
   return axialShadingType.getFunction();
 }