@Override JSType resolveInternal(ErrorReporter t, StaticScope<JSType> scope) { setResolvedTypeInternal(this); call = (ArrowType) safeResolve(call, t, scope); if (prototypeSlot != null) { prototypeSlot.setType(safeResolve(prototypeSlot.getType(), t, scope)); } // Warning about typeOfThis if it doesn't resolve to an ObjectType // is handled further upstream. // // TODO(nicksantos): Handle this correctly if we have a UnionType. JSType maybeTypeOfThis = safeResolve(typeOfThis, t, scope); if (maybeTypeOfThis != null) { if (maybeTypeOfThis.isNullType() || maybeTypeOfThis.isVoidType()) { typeOfThis = maybeTypeOfThis; } else { maybeTypeOfThis = ObjectType.cast(maybeTypeOfThis.restrictByNotNullOrUndefined()); if (maybeTypeOfThis != null) { typeOfThis = maybeTypeOfThis; } } } ImmutableList<ObjectType> resolvedImplemented = resolveTypeListHelper(implementedInterfaces, t, scope); if (resolvedImplemented != null) { implementedInterfaces = resolvedImplemented; } ImmutableList<ObjectType> resolvedExtended = resolveTypeListHelper(extendedInterfaces, t, scope); if (resolvedExtended != null) { extendedInterfaces = resolvedExtended; } if (subTypes != null) { for (int i = 0; i < subTypes.size(); i++) { subTypes.set(i, JSType.toMaybeFunctionType(subTypes.get(i).resolve(t, scope))); } } return super.resolveInternal(t, scope); }
/** * A function is a subtype of another if their call methods are related via subtyping and {@code * this} is a subtype of {@code that} with regard to the prototype chain. */ @Override public boolean isSubtype(JSType that) { if (JSType.isSubtypeHelper(this, that)) { return true; } if (that.isFunctionType()) { FunctionType other = that.toMaybeFunctionType(); if (other.isInterface()) { // Any function can be assigned to an interface function. return true; } if (isInterface()) { // An interface function cannot be assigned to anything. return false; } // If functionA is a subtype of functionB, then their "this" types // should be contravariant. However, this causes problems because // of the way we enforce overrides. Because function(this:SubFoo) // is not a subtype of function(this:Foo), our override check treats // this as an error. Let's punt on all this for now. // TODO(nicksantos): fix this. boolean treatThisTypesAsCovariant = // An interface 'this'-type is non-restrictive. // In practical terms, if C implements I, and I has a method m, // then any m doesn't necessarily have to C#m's 'this' // type doesn't need to match I. (other.typeOfThis.toObjectType() != null && other.typeOfThis.toObjectType().getConstructor() != null && other.typeOfThis.toObjectType().getConstructor().isInterface()) || // If one of the 'this' types is covariant of the other, // then we'll treat them as covariant (see comment above). other.typeOfThis.isSubtype(this.typeOfThis) || this.typeOfThis.isSubtype(other.typeOfThis); return treatThisTypesAsCovariant && this.call.isSubtype(other.call); } return getNativeType(JSTypeNative.FUNCTION_PROTOTYPE).isSubtype(that); }
/** * Resolves a named type by looking up its first component in the scope, and subsequent components * as properties. The scope must have been fully parsed and a symbol table constructed. */ private void resolveViaProperties(ErrorReporter reporter, StaticTypedScope<JSType> enclosing) { JSType value = lookupViaProperties(reporter, enclosing); // last component of the chain if (value != null && value.isFunctionType() && (value.isConstructor() || value.isInterface())) { FunctionType functionType = value.toMaybeFunctionType(); setReferencedAndResolvedType(functionType.getInstanceType(), reporter); } else if (value != null && value.isNoObjectType()) { setReferencedAndResolvedType( registry.getNativeObjectType(JSTypeNative.NO_OBJECT_TYPE), reporter); } else if (value instanceof EnumType) { setReferencedAndResolvedType(((EnumType) value).getElementsType(), reporter); } else { // We've been running into issues where people forward-declare // non-named types. (This is legitimate...our dependency management // code doubles as our forward-declaration code.) // // So if the type does resolve to an actual value, but it's not named, // then don't respect the forward declaration. handleUnresolvedType(reporter, value == null || value.isUnknownType()); } }
/** Adds an alternate to the union type under construction. Returns this for easy chaining. */ public UnionTypeBuilder addAlternate(JSType alternate, boolean isStructural) { // build() returns the bottom type by default, so we can // just bail out early here. if (alternate.isNoType()) { return this; } isAllType = isAllType || alternate.isAllType(); containsVoidType = containsVoidType || alternate.isVoidType(); boolean isAlternateUnknown = alternate instanceof UnknownType; isNativeUnknownType = isNativeUnknownType || isAlternateUnknown; if (isAlternateUnknown) { areAllUnknownsChecked = areAllUnknownsChecked && alternate.isCheckedUnknownType(); } if (!isAllType && !isNativeUnknownType) { if (alternate.isUnionType()) { UnionType union = alternate.toMaybeUnionType(); for (JSType unionAlt : union.getAlternatesWithoutStructuralTyping()) { addAlternate(unionAlt); } } else { if (alternates.size() > maxUnionSize) { return this; } // Function types are special, because they have their // own bizarre sub-lattice. See the comments on // FunctionType#supAndInf helper and above at functionTypePosition. if (alternate.isFunctionType() && functionTypePosition != -1) { // See the comments on functionTypePosition above. FunctionType other = alternates.get(functionTypePosition).toMaybeFunctionType(); FunctionType supremum = alternate.toMaybeFunctionType().supAndInfHelper(other, true); alternates.set(functionTypePosition, supremum); result = null; return this; } // Look through the alternates we've got so far, // and check if any of them are duplicates of // one another. int currentIndex = 0; Iterator<JSType> it = alternates.iterator(); while (it.hasNext()) { boolean removeCurrent = false; JSType current = it.next(); // Unknown and NoResolved types may just be names that haven't // been resolved yet. So keep these in the union, and just use // equality checking for simple de-duping. if (alternate.isUnknownType() || current.isUnknownType() || alternate.isNoResolvedType() || current.isNoResolvedType() || alternate.hasAnyTemplateTypes() || current.hasAnyTemplateTypes()) { if (alternate.isEquivalentTo(current, isStructural)) { // Alternate is unnecessary. return this; } } else { // Because "Foo" and "Foo.<?>" are roughly equivalent // templatized types, special care is needed when building the // union. For example: // Object is consider a subtype of Object.<string> // but we want to leave "Object" not "Object.<string>" when // building the subtype. // if (alternate.isTemplatizedType() || current.isTemplatizedType()) { // Cases: // 1) alternate:Array.<string> and current:Object ==> Object // 2) alternate:Array.<string> and current:Array ==> Array // 3) alternate:Object.<string> and // current:Array ==> Array|Object.<string> // 4) alternate:Object and current:Array.<string> ==> Object // 5) alternate:Array and current:Array.<string> ==> Array // 6) alternate:Array and // current:Object.<string> ==> Array|Object.<string> // 7) alternate:Array.<string> and // current:Array.<number> ==> Array.<?> // 8) alternate:Array.<string> and // current:Array.<string> ==> Array.<string> // 9) alternate:Array.<string> and // current:Object.<string> ==> Object.<string>|Array.<string> if (!current.isTemplatizedType()) { if (isSubtype(alternate, current, isStructural)) { // case 1, 2 return this; } // case 3: leave current, add alternate } else if (!alternate.isTemplatizedType()) { if (isSubtype(current, alternate, isStructural)) { // case 4, 5 removeCurrent = true; } // case 6: leave current, add alternate } else { Preconditions.checkState( current.isTemplatizedType() && alternate.isTemplatizedType()); TemplatizedType templatizedAlternate = alternate.toMaybeTemplatizedType(); TemplatizedType templatizedCurrent = current.toMaybeTemplatizedType(); if (templatizedCurrent.wrapsSameRawType(templatizedAlternate)) { if (alternate .getTemplateTypeMap() .checkEquivalenceHelper( current.getTemplateTypeMap(), EquivalenceMethod.IDENTITY, SubtypingMode.NORMAL)) { // case 8 return this; } else { // TODO(johnlenz): should we leave both types? // case 7: add a merged alternate // We currently merge to the templatized types to "unknown" // which is equivalent to the raw type. JSType merged = templatizedCurrent.getReferencedObjTypeInternal(); return addAlternate(merged); } } // case 9: leave current, add alternate } // Otherwise leave both templatized types. } else if (isSubtype(alternate, current, isStructural)) { // Alternate is unnecessary. return this; } else if (isSubtype(current, alternate, isStructural)) { // Alternate makes current obsolete removeCurrent = true; } } if (removeCurrent) { it.remove(); if (currentIndex == functionTypePosition) { functionTypePosition = -1; } else if (currentIndex < functionTypePosition) { functionTypePosition--; currentIndex--; } } currentIndex++; } if (alternate.isFunctionType()) { // See the comments on functionTypePosition above. Preconditions.checkState(functionTypePosition == -1); functionTypePosition = alternates.size(); } alternates.add(alternate); result = null; // invalidate the memoized result } } else { result = null; } return this; }