public void printGrid(Grid grid) { for (int i = 0; i < grid.getHeight(); i++) { for (int j = 0; j < grid.getHeight(); j++) { char toPrint = (grid.isAlive(i, j)) ? symbole[0] : symbole[1]; System.out.print(toPrint + " "); } System.out.print("\n"); } }
public void printEntriesOld() { for (int y = 0; y < grid.getHeight(); y++) { System.out.print(y + 1 + ") "); for (int x = 0; x < grid.getWidth(); x++) { String content = grid.getCell(x, y).getContent(); if (content != null) { System.out.print(" " + content + " "); } System.out.println(); } } }
public void printEntries() { for (int y = 0; y < grid.getHeight(); y++) { System.out.print(y + 1 + ") "); for (int x = 0; x < grid.getWidth(); x++) { GridCell cell = grid.getCell(x, y); String content = cell.getContent(); if (content == null) { content = "*"; } System.out.print(" " + content + " "); } System.out.println(); } }
public ConnectedComponentState( Grid grid, GridBit mask, int x, int y, int z, byte state, boolean collectData, int algorithm) { this.grid = grid; this.mask = mask; this.state = state; this.seedX = x; this.seedY = y; this.seedZ = z; nx1 = grid.getWidth() - 1; ny1 = grid.getHeight() - 1; nz1 = grid.getDepth() - 1; // printf("ConnectedComponent(%d, %d, %d)\n", x,y,z); if (collectData) m_component = new ArrayInt(30); switch (algorithm) { default: case ALG_SCANLINE_STACK: fillScanLineStack(new int[] {x, y, z}); break; case ALG_SCANLINE_QUEUE: fillScanLineQueue(new int[] {x, y, z}); break; case ALG_FLOODFILL_QUEUE: floodFillQue(new int[] {x, y, z}); break; case ALG_FLOODFILL_RECURSIVE: floodFill(x, y, z, 0); break; } // release references mask = null; grid = null; }
/** Test that MT is faster then ST. Assumes we always run on a MT box */ public void _testMTFaster() { // TODO: this test does not always works so removing for now int size1 = 800; int size2 = 800; byte state1 = Grid.INSIDE; byte state2 = Grid.INSIDE; Grid grid1 = new ArrayGridByte(size1, size1, size1, 0.001, 0.001); Grid grid2 = new ArrayGridByte(size2, size2, size2, 0.002, 0.002); Grid grid3 = new ArrayGridByte(size2, size2, size2, 0.002, 0.002); for (int y = 0; y < grid1.getHeight(); y++) { for (int x = 0; x < grid1.getWidth(); x++) { for (int z = 0; z < grid1.getDepth(); z++) { grid1.setState(x, y, z, state1); } } } for (int y = 0; y < grid2.getHeight(); y++) { for (int x = 0; x < grid2.getWidth(); x++) { for (int z = 0; z < grid2.getDepth(); z++) { grid2.setState(x, y, z, state1); } } } int WARMUP = 3; long st_time = 0; for (int i = 0; i < WARMUP; i++) { long t0 = System.currentTimeMillis(); // get the subtraction of grid1 from grid2 SubtractOpMT op = new SubtractOpMT(grid1, Runtime.getRuntime().availableProcessors()); Grid subtrGridMT = op.execute(grid2); long mt_time = System.currentTimeMillis() - t0; t0 = System.currentTimeMillis(); SubtractOp op2 = new SubtractOp(grid1, 0, 0, 0, 1); Grid subtrGridST = op2.execute(grid2); st_time = System.currentTimeMillis() - t0; // printf("MT time: %6d ST time: %6d SpeedUp: %6.2f\n",mt_time,st_time,(float)st_time / // mt_time); } int TIMES = 1; int cores = Runtime.getRuntime().availableProcessors(); cores = Math.min(cores, 16); // We expect linear scaling to stop by this time float expected_speedup = 0.5f * cores; for (int i = 0; i < TIMES; i++) { long t0 = System.currentTimeMillis(); // get the subtraction of grid1 from grid2 SubtractOpMT op = new SubtractOpMT(grid1, Runtime.getRuntime().availableProcessors()); op.setThreadCount(cores); op.setSliceSize(2); Grid subtrGridMT = op.execute(grid2); if (subtrGridMT.getWidth() > 10000) { System.out.println("no optimize away"); } ; long mt_time = System.currentTimeMillis() - t0; float speedup = (float) st_time / mt_time; printf("MT time: %6d ST time: %6d SpeedUp: %6.2f\n", mt_time, st_time, speedup); assertTrue("Speedup factor > " + expected_speedup, speedup >= expected_speedup); } }
/** Test basic operation */ public void testBasic() { int size = 10; AttributeGrid grid = new ArrayAttributeGridByte(size, size, size, 0.001, 0.001); for (int y = 2; y < 8; y++) { for (int z = 2; z < 8; z++) { setX(grid, y, z, Grid.INSIDE, 1, 2, 7); } } int erosionDistance = 1; ErosionCube ec = new ErosionCube(erosionDistance); Grid erodedGrid = ec.execute(grid); int width = erodedGrid.getWidth(); int height = erodedGrid.getHeight(); int depth = erodedGrid.getDepth(); for (int y = 0; y < height; y++) { for (int z = 0; z < depth; z++) { for (int x = 0; x < width; x++) { byte state = erodedGrid.getState(x, y, z); // System.out.println(x + ", " + y + ", " + z + ": " + state); if (y >= 2 && y < 6) { if (z >= 2 && z < 6) { if (x >= 2 && x < 6) { assertEquals( "State of (" + x + " " + y + " " + z + " is not interior", Grid.INSIDE, state); } else { assertEquals( "State of (" + x + " " + y + " " + z + " is not outside", Grid.OUTSIDE, state); } } else { assertEquals( "State of (" + x + " " + y + " " + z + " is not outside", Grid.OUTSIDE, state); } } else { assertEquals( "State of (" + x + " " + y + " " + z + " is not outside", Grid.OUTSIDE, state); } } } } /* erosionDistance = 2; ec = new ErosionCube(erosionDistance); erodedGrid = ec.execute(grid); width = erodedGrid.getWidth(); height = erodedGrid.getHeight(); depth = erodedGrid.getDepth(); for (int y=0; y<height; y++) { for (int z=0; z<depth; z++) { for (int x=0; x<width; x++) { System.out.println(x + ", " + y + ", " + z + ": " + erodedGrid.getState(x, y, z)); } } } */ }
@Override protected double computePrefHeight(double width) { int h = LayoutUtil.getSizeSafe(grid != null ? grid.getHeight() : null, LayoutUtil.PREF); return h; }