public ComplexNumber scalarProduct(ComplexVector2D v1) { ComplexNumber c; ComplexNumber d; c = this.x.mult(v1.x); d = this.y.mult(v1.y); return (c.add(d)); }
public ComplexNumber pow(int n) { ComplexNumber powResult = new ComplexNumber(a, b); ComplexNumber staticComplexNum = new ComplexNumber(a, b); for (int i = 1; i < n; i++) { powResult = powResult.multiply(staticComplexNum); } return powResult; }
@Test public void shouldAddTwoComplexNumbers() { ComplexNumber number1 = new ComplexNumber(4, 7); ComplexNumber number2 = new ComplexNumber(5, 3); ComplexNumber result = number1.add(number2); assertEquals(9, result.getReal(), 0); assertEquals(10, result.getImaginary(), 0); }
@Test public void multShouldWorkCorrect() { ComplexMatrix2x2 matrix = (ComplexMatrix2x2) context.getBean("zeroMatrix"); ComplexNumber cN = ComplexMatrix2x2Util.getComplexNumber(0, 0); when(cN.add(any(ComplexNumber.class))).thenReturn(cN); when(cN.mult(any(ComplexNumber.class))).thenReturn(cN); ComplexNumber[][] complexNumbers = new ComplexNumber[][] {{cN, cN}, {cN, cN}}; assertTrue(Arrays.deepEquals(matrix.mult(matrix).getMatrix(), complexNumbers)); }
@Test public void shouldCalculateSquare() { ComplexNumber number1 = new ComplexNumber(2, 3); assertEquals(-5, number1.getSquare().getReal(), 0); assertEquals(12, number1.getSquare().getImaginary(), 0); ComplexNumber number2 = new ComplexNumber(4, 2); assertEquals(12, number2.getSquare().getReal(), 0); assertEquals(16, number2.getSquare().getImaginary(), 0); }
public void calcZeros(ArrayAdapter<String> zerosArr, int nFns) { int n; String title; for (int i = 0; i < nFns; i += 1) { if (!graphCalcs[i].empty()) { title = "Fn" + Integer.toString(i + 1) + "(x):"; n = graphCalcs[i].calcZeros( zeros[i], graph.getXLeft(), graph.getXRight(), graph.getYBot(), graph.getYTop(), graph.getXMin(), graph.getXMax(), graph.getYMin(), graph.getYMax(), graph.getXUnitLen()); // Log.v ("calcZeros",Integer.toString(n)); if (n == 0) title += " None"; zerosArr.add(title); // Convert x values of zeros to strings for (int k = 0; k < n; k += 1) { float num = zeros[i][k]; if ((num > -0.001 && num < 0) || (num < 0.001 && num > 0)) num = 0; String numStr = ComplexNumber.roundStr(num, 3); zerosArr.add(" x = " + numStr); } } } }
public static void main(String[] args) { ComplexNumber A = new ComplexNumber(2, 3); ComplexNumber B = new ComplexNumber(1, 4); System.out.println("Add result: " + A.addComplex(B).toString()); System.out.println("Sub result: " + A.subComplex(B).toString()); System.out.println("Mult result: " + A.multComplex(B).toString()); System.out.println("Div result: " + A.divComplex(B).toString()); System.out.println("A Mag: " + A.magComplex()); System.out.println("B Mag: " + B.magComplex()); }
@Test public void canConvertToString() { ComplexNumber z = new ComplexNumber(1, 2); assertEquals("1.0 + 2.0i", z.toString()); }
/** * Returns the complex plane currently being used. * * @return complex plan currently being used. */ private String complexPlane() { ComplexNumber C1 = new ComplexNumber(new RealNumber(currWXMin), new RealNumber(currWYMin)); ComplexNumber C2 = new ComplexNumber(new RealNumber(currWXMax), new RealNumber(currWYMax)); return "< " + C1.toString() + ", " + C2.toString() + " >"; }
@Test public void shouldCalculateSquareWithNegativeRealAndImaginary() { ComplexNumber number = new ComplexNumber(-5, -3); assertEquals(16, number.getSquare().getReal(), 0); assertEquals(30, number.getSquare().getImaginary(), 0); }
@Test public void canConvertNegativeRealPartToString() { ComplexNumber z = new ComplexNumber(-1, 1); assertEquals("-1.0 + 1.0i", z.toString()); }
public ComplexNumber specialDivide(ComplexNumber a, double b) { double aNew = a.getA() / b; double bNew = a.getB() / b; ComplexNumber newComplexNum = new ComplexNumber(aNew, bNew); return newComplexNum; }
public ComplexNumber subtract(ComplexNumber other) { ComplexNumber newComplexNum = new ComplexNumber(-other.getA(), -other.getB()); newComplexNum = add(newComplexNum); return newComplexNum; }
public ComplexNumber add(ComplexNumber other) { double aNew = other.getA() + a; double bNew = other.getB() + b; ComplexNumber newComplexNum = new ComplexNumber(aNew, bNew); return newComplexNum; }
@Test public void canConvertFloatingComplexNumberToString() { ComplexNumber z = new ComplexNumber(3.14, 2); assertEquals("3.14 + 2.0i", z.toString()); }
public ComplexNumber multiply(ComplexNumber other) { double aNew = other.getA() * a - other.getB() * b; double bNew = other.getB() * a + other.getA() * b; ComplexNumber newComplexNum = new ComplexNumber(aNew, bNew); return newComplexNum; }
@Test public void canConvertScientificFormatToString() { ComplexNumber z = new ComplexNumber(1, 1.2456e-2); assertEquals("1.0 + 0.01i", z.toString()); }
public ComplexNumber divide(ComplexNumber other) { double tempNumber = other.getA() * other.getA() + other.getB() * other.getB(); ComplexNumber tempComplexNum = new ComplexNumber(other.getA(), -other.getB()); tempComplexNum = multiply(tempComplexNum); return specialDivide(tempComplexNum, tempNumber); }
@Test public void canConvertNegativeImaginaryPartToString() { ComplexNumber z = new ComplexNumber(1, -1); assertEquals("1.0 - 1.0i", z.toString()); }
@Test public void shouldCalculateSquareWithNegativeImaginary() { ComplexNumber number = new ComplexNumber(3, -2); assertEquals(5, number.getSquare().getReal(), 0); assertEquals(-12, number.getSquare().getImaginary(), 0); }