public AffineRed(CachableRed src, AffineTransform src2me, RenderingHints hints) { super(); // We _must_ call init... this.src2me = src2me; this.hints = hints; try { me2src = src2me.createInverse(); } catch (NoninvertibleTransformException nite) { me2src = null; } // Calculate my bounds by applying the affine transform to // my input data..codec/ Rectangle srcBounds = src.getBounds(); // srcBounds.grow(-1,-1); Rectangle myBounds; myBounds = src2me.createTransformedShape(srcBounds).getBounds(); // If the output buffer is not premultiplied in certain cases it // fails to properly divide out the Alpha (it always does // the affine on premultiplied data), hence you get ugly // back aliasing effects... ColorModel cm = fixColorModel(src); // fix my sample model so it makes sense given my size. SampleModel sm = fixSampleModel(src, cm, myBounds); Point2D pt = new Point2D.Float(src.getTileGridXOffset(), src.getTileGridYOffset()); pt = src2me.transform(pt, null); // Finish initializing our base class... init(src, myBounds, cm, sm, (int) pt.getX(), (int) pt.getY(), null); }
public WritableRaster copyData(WritableRaster wr) { // Get my source. CachableRed src = (CachableRed) getSources().get(0); Rectangle srcR = src.getBounds(); Rectangle wrR = wr.getBounds(); if (wrR.intersects(srcR)) { Rectangle r = wrR.intersection(srcR); // Limit the raster I send to my source to his rect. WritableRaster srcWR; srcWR = wr.createWritableChild(r.x, r.y, r.width, r.height, r.x, r.y, null); src.copyData(srcWR); } if (padMode == PadMode.ZERO_PAD) { handleZero(wr); } else if (padMode == PadMode.REPLICATE) { handleReplicate(wr); } else if (padMode == PadMode.WRAP) { handleWrap(wr); } return wr; }
/** * Construct a blurred version of <tt>src</tt>, by blurring with a gaussian kernel with standard * Deviation of <tt>stdDev</tt> pixels. * * @param src The source image to blur * @param stdDevX The Standard Deviation of the Gaussian kernel in X * @param stdDevY The Standard Deviation of the Gaussian kernel in Y * @param rh Rendering hints. */ public GaussianBlurRed8Bit(CachableRed src, double stdDevX, double stdDevY, RenderingHints rh) { super(); // Remember to call super.init() this.stdDevX = stdDevX; this.stdDevY = stdDevY; this.hints = rh; xinset = surroundPixels(stdDevX, rh); yinset = surroundPixels(stdDevY, rh); Rectangle myBounds = src.getBounds(); myBounds.x += xinset; myBounds.y += yinset; myBounds.width -= 2 * xinset; myBounds.height -= 2 * yinset; if ((myBounds.width <= 0) || (myBounds.height <= 0)) { myBounds.width = 0; myBounds.height = 0; } ColorModel cm = fixColorModel(src); SampleModel sm = src.getSampleModel(); int tw = sm.getWidth(); int th = sm.getHeight(); if (tw > myBounds.width) tw = myBounds.width; if (th > myBounds.height) th = myBounds.height; sm = cm.createCompatibleSampleModel(tw, th); init( src, myBounds, cm, sm, src.getTileGridXOffset() + xinset, src.getTileGridYOffset() + yinset, null); boolean highQuality = ((hints != null) && RenderingHints.VALUE_RENDER_QUALITY.equals(hints.get(RenderingHints.KEY_RENDERING))); // System.out.println("StdDev: " + stdDevX + "x" + stdDevY); if ((xinset != 0) && ((stdDevX < 2) || highQuality)) convOp[0] = new ConvolveOp(makeQualityKernelX(xinset * 2 + 1)); else dX = (int) Math.floor(DSQRT2PI * stdDevX + 0.5f); if ((yinset != 0) && ((stdDevY < 2) || highQuality)) convOp[1] = new ConvolveOp(makeQualityKernelY(yinset * 2 + 1)); else dY = (int) Math.floor(DSQRT2PI * stdDevY + 0.5f); }
/** * Construct a luminace image from src. * * @param src The image to convert to a luminance image */ public Any2LsRGBRed(CachableRed src) { super( src, src.getBounds(), fixColorModel(src), fixSampleModel(src), src.getTileGridXOffset(), src.getTileGridYOffset(), null); ColorModel srcCM = src.getColorModel(); if (srcCM == null) return; ColorSpace srcCS = srcCM.getColorSpace(); if (srcCS == ColorSpace.getInstance(ColorSpace.CS_sRGB)) srcIssRGB = true; }
public WritableRaster INT_PACK_BYTE_COMP_Impl(WritableRaster wr) { // Get my source. CachableRed srcRed = (CachableRed) getSources().get(0); CachableRed alphaRed = (CachableRed) getSources().get(1); // Already has alpha channel so we use it. srcRed.copyData(wr); Rectangle rgn = wr.getBounds(); rgn = rgn.intersection(alphaRed.getBounds()); Raster r = alphaRed.getData(rgn); ComponentSampleModel csm; csm = (ComponentSampleModel) r.getSampleModel(); final int alpScanStride = csm.getScanlineStride(); DataBufferByte alpDB = (DataBufferByte) r.getDataBuffer(); final int alpBase = (alpDB.getOffset() + csm.getOffset( rgn.x - r.getSampleModelTranslateX(), rgn.y - r.getSampleModelTranslateY())); // Access the pixel data array final byte[] alpPixels = alpDB.getBankData()[0]; SinglePixelPackedSampleModel sppsm; sppsm = (SinglePixelPackedSampleModel) wr.getSampleModel(); final int srcScanStride = sppsm.getScanlineStride(); DataBufferInt srcDB = (DataBufferInt) wr.getDataBuffer(); final int srcBase = (srcDB.getOffset() + sppsm.getOffset( rgn.x - wr.getSampleModelTranslateX(), rgn.y - wr.getSampleModelTranslateY())); // Access the pixel data array final int[] srcPixels = srcDB.getBankData()[0]; ColorModel cm = srcRed.getColorModel(); if (cm.isAlphaPremultiplied()) { // For alpha premult we need to multiply all comps. for (int y = 0; y < rgn.height; y++) { int sp = srcBase + y * srcScanStride; int ap = alpBase + y * alpScanStride; int end = sp + rgn.width; while (sp < end) { int a = ((int) alpPixels[ap++]) & 0xFF; final int pix = srcPixels[sp]; srcPixels[sp] = ((((((pix >>> 24)) * a) & 0xFF00) << 16) | (((((pix >>> 16) & 0xFF) * a) & 0xFF00) << 8) | (((((pix >>> 8) & 0xFF) * a) & 0xFF00)) | (((((pix) & 0xFF) * a) & 0xFF00) >> 8)); sp++; } } } else { // For non-alpha premult we only need to multiply alpha. for (int y = 0; y < rgn.height; y++) { int sp = srcBase + y * srcScanStride; int ap = alpBase + y * alpScanStride; int end = sp + rgn.width; while (sp < end) { int a = ((int) alpPixels[ap++]) & 0xFF; int sa = srcPixels[sp] >>> 24; srcPixels[sp] = ((((sa * a) & 0xFF00) << 16) | srcPixels[sp] & 0x00FFFFFF); sp++; } } } return wr; }
public static Rectangle makeBounds(CachableRed src1, CachableRed src2) { Rectangle r1 = src1.getBounds(); Rectangle r2 = src2.getBounds(); return r1.intersection(r2); }
public WritableRaster copyData(WritableRaster wr) { // Get my source. CachableRed srcRed = (CachableRed) getSources().get(0); CachableRed alphaRed = (CachableRed) getSources().get(1); if (is_INT_PACK_BYTE_COMP(srcRed.getSampleModel(), alphaRed.getSampleModel())) return INT_PACK_BYTE_COMP_Impl(wr); ColorModel cm = srcRed.getColorModel(); if (cm.hasAlpha()) { // Already has alpha channel so we use it. srcRed.copyData(wr); Rectangle rgn = wr.getBounds(); if (rgn.intersects(alphaRed.getBounds())) rgn = rgn.intersection(alphaRed.getBounds()); else return wr; int[] wrData = null; int[] alphaData = null; Raster r = alphaRed.getData(rgn); int w = rgn.width; final int bands = wr.getSampleModel().getNumBands(); if (cm.isAlphaPremultiplied()) { for (int y = rgn.y; y < rgn.y + rgn.height; y++) { wrData = wr.getPixels(rgn.x, y, w, 1, wrData); alphaData = r.getSamples(rgn.x, y, w, 1, 0, alphaData); int i = 0, a, b; // 4 is the most common case. // 2 is probably next most common... switch (bands) { case 2: for (int x = 0; x < alphaData.length; x++) { a = alphaData[x] & 0xFF; wrData[i] = ((wrData[i] & 0xFF) * a) >> 8; ++i; wrData[i] = ((wrData[i] & 0xFF) * a) >> 8; ++i; } break; case 4: for (int x = 0; x < alphaData.length; x++) { a = alphaData[x] & 0xFF; wrData[i] = ((wrData[i] & 0xFF) * a) >> 8; ++i; wrData[i] = ((wrData[i] & 0xFF) * a) >> 8; ++i; wrData[i] = ((wrData[i] & 0xFF) * a) >> 8; ++i; wrData[i] = ((wrData[i] & 0xFF) * a) >> 8; ++i; } break; default: for (int x = 0; x < alphaData.length; x++) { a = alphaData[x] & 0xFF; for (b = 0; b < bands; b++) { wrData[i] = ((wrData[i] & 0xFF) * a) >> 8; ++i; } } } wr.setPixels(rgn.x, y, w, 1, wrData); } } else { int b = srcRed.getSampleModel().getNumBands() - 1; for (int y = rgn.y; y < rgn.y + rgn.height; y++) { wrData = wr.getSamples(rgn.x, y, w, 1, b, wrData); alphaData = r.getSamples(rgn.x, y, w, 1, 0, alphaData); for (int i = 0; i < wrData.length; i++) { wrData[i] = ((wrData[i] & 0xFF) * (alphaData[i] & 0xFF)) >> 8; } wr.setSamples(rgn.x, y, w, 1, b, wrData); } } return wr; } // No alpha in source, so we hide the alpha channel in wr and // have our source fill wr with color info... int[] bands = new int[wr.getNumBands() - 1]; for (int i = 0; i < bands.length; i++) bands[i] = i; WritableRaster subWr; subWr = wr.createWritableChild( wr.getMinX(), wr.getMinY(), wr.getWidth(), wr.getHeight(), wr.getMinX(), wr.getMinY(), bands); srcRed.copyData(subWr); Rectangle rgn = wr.getBounds(); rgn = rgn.intersection(alphaRed.getBounds()); bands = new int[] {wr.getNumBands() - 1}; subWr = wr.createWritableChild(rgn.x, rgn.y, rgn.width, rgn.height, rgn.x, rgn.y, bands); alphaRed.copyData(subWr); return wr; }
public void genRect(WritableRaster wr) { if (me2src == null) return; Rectangle srcR = me2src.createTransformedShape(wr.getBounds()).getBounds(); // System.out.println("Affine wrR: " + wr.getBounds()); // System.out.println("Affine srcR: " + srcR); // Outset by two pixels so we get context for interpolation... srcR.setBounds(srcR.x - 1, srcR.y - 1, srcR.width + 2, srcR.height + 2); // Don't try and get data from src that it doesn't have... CachableRed src = (CachableRed) getSources().get(0); // Raster srcRas = src.getData(srcR); if (!srcR.intersects(src.getBounds())) return; Raster srcRas = src.getData(srcR.intersection(src.getBounds())); if (srcRas == null) return; // This works around the problem that the buffered ops // completely ignore the coords of the Rasters passed in. AffineTransform aff = (AffineTransform) src2me.clone(); // Translate what is at 0,0 (which will be what our current // minX/Y is) to our current minX,minY. aff.concatenate(AffineTransform.getTranslateInstance(srcRas.getMinX(), srcRas.getMinY())); Point2D srcPt = new Point2D.Float(wr.getMinX(), wr.getMinY()); srcPt = me2src.transform(srcPt, null); Point2D destPt = new Point2D.Double(srcPt.getX() - srcRas.getMinX(), srcPt.getY() - srcRas.getMinY()); destPt = aff.transform(destPt, null); // Translate what will be at minX,minY to zero, zero // which where java2d will think the real minX,minY is. aff.preConcatenate(AffineTransform.getTranslateInstance(-destPt.getX(), -destPt.getY())); AffineTransformOp op = new AffineTransformOp(aff, hints); BufferedImage srcBI, myBI; ColorModel srcCM = src.getColorModel(); ColorModel myCM = getColorModel(); WritableRaster srcWR = (WritableRaster) srcRas; // If the output buffer is not premultiplied in certain cases // it fails to properly divide out the Alpha (it always does // the affine on premultiplied data). We help it out by // premultiplying for it. srcCM = GraphicsUtil.coerceData(srcWR, srcCM, true); srcBI = new BufferedImage( srcCM, srcWR.createWritableTranslatedChild(0, 0), srcCM.isAlphaPremultiplied(), null); myBI = new BufferedImage( myCM, wr.createWritableTranslatedChild(0, 0), myCM.isAlphaPremultiplied(), null); op.filter(srcBI, myBI); // if ((count % 40) == 0) { // org.apache.batik.ImageDisplay.showImage("Src: " , srcBI); // org.apache.batik.ImageDisplay.showImage("Dst: " , myBI); // } // count++; }
protected void handleReplicate(WritableRaster wr) { // Get my source. CachableRed src = (CachableRed) getSources().get(0); Rectangle srcR = src.getBounds(); Rectangle wrR = wr.getBounds(); int x = wrR.x; int y = wrR.y; int width = wrR.width; int height = wrR.height; Rectangle r; { // Calculate an intersection that makes some sense // even when the rects don't really intersect // (The x and y ranges will be correct if they // overlap in one dimension even if they don't // intersect in both dimensions). int minX = (srcR.x > x) ? srcR.x : x; int maxX = (((srcR.x + srcR.width - 1) < (x + width - 1)) ? (srcR.x + srcR.width - 1) : (x + width - 1)); int minY = (srcR.y > y) ? srcR.y : y; int maxY = (((srcR.y + srcR.height - 1) < (y + height - 1)) ? (srcR.y + srcR.height - 1) : (y + height - 1)); int x0 = minX; int w = maxX - minX + 1; int y0 = minY; int h = maxY - minY + 1; if (w < 0) { x0 = 0; w = 0; } if (h < 0) { y0 = 0; h = 0; } r = new Rectangle(x0, y0, w, h); } // We split the edge drawing up into four parts. // // +-----------------------------+ // | 3 | 1 | 4 | // | +---------------+ | // / / / / // / / src / / // / / / / // / / / / // | +---------------+ | // | | 2 | | // +-----------------------------+ // // Draw #1 if (y < srcR.y) { int repW = r.width; int repX = r.x; int wrX = r.x; int wrY = y; if (x + width - 1 <= srcR.x) { // we are off to the left of src. so set repX to the // left most pixel... repW = 1; repX = srcR.x; wrX = x + width - 1; } else if (x >= srcR.x + srcR.width) { // we are off to the right of src, so set repX to // the right most pixel repW = 1; repX = srcR.x + srcR.width - 1; wrX = x; } // This fills the top row of section 1 from src (we // go to src instead of getting the data from wr because // in some cases wr will be completely off the top of src WritableRaster wr1 = wr.createWritableChild(wrX, wrY, repW, 1, repX, srcR.y, null); src.copyData(wr1); wrY++; int endY = srcR.y; if (y + height < endY) endY = y + height; if (wrY < endY) { int[] pixels = wr.getPixels(wrX, wrY - 1, repW, 1, (int[]) null); while (wrY < srcR.y) { wr.setPixels(wrX, wrY, repW, 1, pixels); wrY++; } } } // Draw #2 if ((y + height) > (srcR.y + srcR.height)) { int repW = r.width; int repX = r.x; int repY = srcR.y + srcR.height - 1; int wrX = r.x; int wrY = srcR.y + srcR.height; if (wrY < y) wrY = y; if (x + width <= srcR.x) { // we are off to the left of src. so set repX to the // left most pixel... repW = 1; repX = srcR.x; wrX = x + width - 1; } else if (x >= srcR.x + srcR.width) { // we are off to the right of src, so set repX to // the right most pixel repW = 1; repX = srcR.x + srcR.width - 1; wrX = x; } if (DEBUG) { System.out.println("wr: " + wr.getBounds()); System.out.println("req: [" + wrX + ", " + wrY + ", " + repW + ", 1]"); } // First we get the top row of pixels from src. (we // go to src instead of getting the data from wr because // in some cases wr will be completely off the bottom of src). WritableRaster wr1 = wr.createWritableChild(wrX, wrY, repW, 1, repX, repY, null); // This fills the top row of section 2 from src src.copyData(wr1); wrY++; int endY = y + height; if (wrY < endY) { // This fills the rest of section 2 from the first line. int[] pixels = wr.getPixels(wrX, wrY - 1, repW, 1, (int[]) null); while (wrY < endY) { wr.setPixels(wrX, wrY, repW, 1, pixels); wrY++; } } } // Draw #3 if (x < srcR.x) { // We are garunteed that we have a column of pixels down // the edge of 1 and src. We simply replicate this column // out to the edges of 2. int wrX = srcR.x; if (x + width <= srcR.x) { wrX = x + width - 1; } int xLoc = x; int[] pixels = wr.getPixels(wrX, y, 1, height, (int[]) null); while (xLoc < wrX) { wr.setPixels(xLoc, y, 1, height, pixels); xLoc++; } } // Draw #4 if (x + width > srcR.x + srcR.width) { // We are garunteed that we have a column of pixels down // the edge of 1 and src. We simply replicate this column // out to the edges of 3. int wrX = srcR.x + srcR.width - 1; if (x >= srcR.x + srcR.width) { wrX = x; } int xLoc = wrX + 1; int endX = x + width - 1; int[] pixels = wr.getPixels(wrX, y, 1, height, (int[]) null); while (xLoc < endX) { wr.setPixels(xLoc, y, 1, height, pixels); xLoc++; } } }
protected void handleZero(WritableRaster wr) { // Get my source. CachableRed src = (CachableRed) getSources().get(0); Rectangle srcR = src.getBounds(); Rectangle wrR = wr.getBounds(); ZeroRecter zr = ZeroRecter.getZeroRecter(wr); // area rect (covers the area left to handle). Rectangle ar = new Rectangle(wrR.x, wrR.y, wrR.width, wrR.height); // draw rect (used for calls to zeroRect); Rectangle dr = new Rectangle(wrR.x, wrR.y, wrR.width, wrR.height); // We split the edge drawing up into four parts. // // +-----------------------------+ // | 1 | 2 | // | +---------------+------| // / / /4 / // / / / / // / / / / // / / / / // | +---------------+------| // | | 3 | // +-----------------------------+ // // We update our x,y, width, height as we go along so // we 'forget' about the parts we have already painted... // Draw #1 if (DEBUG) { System.out.println("WrR: " + wrR + " srcR: " + srcR); // g2d.setColor(new Color(255,0,0,128)); } if (ar.x < srcR.x) { int w = srcR.x - ar.x; if (w > ar.width) w = ar.width; // g2d.fillRect(x, y, w, height); dr.width = w; zr.zeroRect(dr); ar.x += w; ar.width -= w; } // Draw #2 if (DEBUG) { System.out.println( "WrR: [" + ar.x + "," + ar.y + "," + ar.width + "," + ar.height + "] s rcR: " + srcR); // g2d.setColor(new Color(0,0,255,128)); } if (ar.y < srcR.y) { int h = srcR.y - ar.y; if (h > ar.height) h = ar.height; // g2d.fillRect(x, y, width, h); dr.x = ar.x; dr.y = ar.y; dr.width = ar.width; dr.height = h; zr.zeroRect(dr); ar.y += h; ar.height -= h; } // Draw #3 if (DEBUG) { System.out.println( "WrR: [" + ar.x + "," + ar.y + "," + ar.width + "," + ar.height + "] srcR: " + srcR); // g2d.setColor(new Color(0,255,0,128)); } if (ar.y + ar.height > srcR.y + srcR.height) { int h = (ar.y + ar.height) - (srcR.y + srcR.height); if (h > ar.height) h = ar.height; int y0 = ar.y + ar.height - h; // the +/-1 cancel (?) // g2d.fillRect(x, y0, width, h); dr.x = ar.x; dr.y = y0; dr.width = ar.width; dr.height = h; zr.zeroRect(dr); ar.height -= h; } // Draw #4 if (DEBUG) { System.out.println( "WrR: [" + ar.x + "," + ar.y + "," + ar.width + "," + ar.height + "] srcR: " + srcR); // g2d.setColor(new Color(255,255,0,128)); } if (ar.x + ar.width > srcR.x + srcR.width) { int w = (ar.x + ar.width) - (srcR.x + srcR.width); if (w > ar.width) w = ar.width; int x0 = ar.x + ar.width - w; // the +/-1 cancel (?) // g2d.fillRect(x0, y, w, height); dr.x = x0; dr.y = ar.y; dr.width = w; dr.height = ar.height; zr.zeroRect(dr); ar.width -= w; } }