private void histogramMatching(String inputHeader1, String inputHeader2, String outputHeader) { // check to see that the inputHeader and outputHeader are not null. if (inputHeader1.isEmpty() || outputHeader.isEmpty() || inputHeader2.isEmpty()) { showFeedback("One or more of the input parameters have not been set properly."); return; } try { int row, col; double z; int progress = 0; int numCells1 = 0; int numCells2 = 0; int i = 0; WhiteboxRasterInfo inputFile1 = new WhiteboxRasterInfo(inputHeader1); int rows1 = inputFile1.getNumberRows(); int cols1 = inputFile1.getNumberColumns(); double noData1 = inputFile1.getNoDataValue(); WhiteboxRasterInfo inputFile2 = new WhiteboxRasterInfo(inputHeader2); int rows2 = inputFile2.getNumberRows(); int cols2 = inputFile2.getNumberColumns(); double noData2 = inputFile2.getNoDataValue(); WhiteboxRaster outputFile = new WhiteboxRaster( outputHeader, "rw", inputHeader1, WhiteboxRaster.DataType.FLOAT, noData1); outputFile.setPreferredPalette(inputFile1.getPreferredPalette()); double minValue1 = inputFile1.getMinimumValue(); double maxValue1 = inputFile1.getMaximumValue(); int numBins1 = Math.max( 2 * (int) Math.ceil(maxValue1 - minValue1 + 1), (int) Math.ceil(Math.pow(rows1 * cols1, 1.0 / 3))); double binSize = (maxValue1 - minValue1) / numBins1; long[] histogram = new long[numBins1]; int binNum; int numBinsLessOne1 = numBins1 - 1; double[] data; updateProgress("Histogram matching: ", 0); for (row = 0; row < rows1; row++) { data = inputFile1.getRowValues(row); for (col = 0; col < cols1; col++) { z = data[col]; if (z != noData1) { numCells1++; binNum = (int) ((z - minValue1) / binSize); if (binNum > numBinsLessOne1) { binNum = numBinsLessOne1; } histogram[binNum]++; } } if (cancelOp) { cancelOperation(); return; } progress = (int) (100f * row / (rows1 - 1)); updateProgress("Histogram matching: ", progress); } updateProgress("Histogram matching: ", 0); double[] cdf = new double[numBins1]; cdf[0] = histogram[0]; for (i = 1; i < numBins1; i++) { cdf[i] = cdf[i - 1] + histogram[i]; } for (i = 0; i < numBins1; i++) { cdf[i] = cdf[i] / numCells1; } double minValue2 = inputFile2.getMinimumValue(); double maxValue2 = inputFile2.getMaximumValue(); int numBins2 = Math.max( 2 * (int) Math.ceil(maxValue2 - minValue2 + 1), (int) Math.ceil(Math.pow(rows2 * cols2, 1.0 / 3))); int numBinsLessOne2 = numBins2 - 1; long[] histogram2 = new long[numBins2]; double[][] referenceCDF = new double[numBins2][2]; for (row = 0; row < rows2; row++) { data = inputFile2.getRowValues(row); for (col = 0; col < cols2; col++) { z = data[col]; if (z != noData2) { numCells2++; binNum = (int) ((z - minValue2) / binSize); if (binNum > numBinsLessOne2) { binNum = numBinsLessOne2; } histogram2[binNum]++; } } if (cancelOp) { cancelOperation(); return; } progress = (int) (100f * row / (rows1 - 1)); updateProgress("Histogram matching: ", progress); } // convert the reference histogram to a cdf. referenceCDF[0][1] = histogram2[0]; for (i = 1; i < numBins2; i++) { referenceCDF[i][1] = referenceCDF[i - 1][1] + histogram2[i]; } for (i = 0; i < numBins2; i++) { referenceCDF[i][0] = minValue2 + (i / (float) numBins2) * (maxValue2 - minValue2); referenceCDF[i][1] = referenceCDF[i][1] / numCells2; } int[] startingVals = new int[11]; double pVal = 0; for (i = 0; i < numBins2; i++) { pVal = referenceCDF[i][1]; if (pVal < 0.1) { startingVals[1] = i; } if (pVal < 0.2) { startingVals[2] = i; } if (pVal < 0.3) { startingVals[3] = i; } if (pVal < 0.4) { startingVals[4] = i; } if (pVal < 0.5) { startingVals[5] = i; } if (pVal < 0.6) { startingVals[6] = i; } if (pVal < 0.7) { startingVals[7] = i; } if (pVal < 0.8) { startingVals[8] = i; } if (pVal < 0.9) { startingVals[9] = i; } if (pVal <= 1) { startingVals[10] = i; } } updateProgress("Histogram matching: ", 0); int j = 0; double xVal = 0; double x1, x2, p1, p2; for (row = 0; row < rows1; row++) { data = inputFile1.getRowValues(row); for (col = 0; col < cols1; col++) { z = data[col]; if (z != noData1) { binNum = (int) ((z - minValue1) / binSize); if (binNum > numBinsLessOne1) { binNum = numBinsLessOne1; } pVal = cdf[binNum]; j = (int) (Math.floor(pVal * 10)); for (i = startingVals[j]; i < numBins2; i++) { if (referenceCDF[i][1] > pVal) { if (i > 0) { x1 = referenceCDF[i - 1][0]; x2 = referenceCDF[i][0]; p1 = referenceCDF[i - 1][1]; p2 = referenceCDF[i][1]; if (p1 != p2) { xVal = x1 + ((x2 - x1) * ((pVal - p1) / (p2 - p1))); } else { xVal = x1; } } else { xVal = referenceCDF[i][0]; } break; } } outputFile.setValue(row, col, xVal); } } if (cancelOp) { cancelOperation(); return; } progress = (int) (100f * row / (rows1 - 1)); updateProgress("Histogram matching: ", progress); } inputFile1.close(); outputFile.close(); } catch (OutOfMemoryError oe) { myHost.showFeedback("An out-of-memory error has occurred during operation."); } catch (Exception e) { myHost.showFeedback("An error has occurred during operation. See log file for details."); myHost.logException("Error in " + getDescriptiveName(), e); } finally { updateProgress("Progress: ", 0); } }
/** Used to execute this plugin tool. */ @Override public void run() { /* * This transformation has been taken from: * http://ij.ms3d.de/pdf/ihs_transforms.pdf * in reference to Haydn, Dalke, and Henkel (1982) * Note: 0 <= I <= 3, 0 <= H <= 3, 0 <= S <= 1 */ amIActive = true; String redHeader, greenHeader, blueHeader, intensityHeader, saturationHeader, hueHeader; if (args.length <= 0) { showFeedback("Plugin parameters have not been set."); return; } redHeader = args[0]; greenHeader = args[1]; blueHeader = args[2]; intensityHeader = args[3]; hueHeader = args[4]; saturationHeader = args[5]; // check to see that the inputHeader and outputHeader are not null. if (redHeader.isEmpty() || greenHeader.isEmpty() || blueHeader == null || intensityHeader.isEmpty() || hueHeader.isEmpty() || saturationHeader.isEmpty()) { showFeedback("One or more of the input parameters have not been set properly."); return; } try { int row, col; double redVal, greenVal, blueVal; // double redRange, greenRange, blueRange; // double redMin, greenMin, blueMin; double r, g, b; double i, s, h, m; float progress; WhiteboxRasterInfo red = new WhiteboxRasterInfo(redHeader); int rows = red.getNumberRows(); int cols = red.getNumberColumns(); WhiteboxRasterInfo green = new WhiteboxRasterInfo(greenHeader); if (green.getNumberRows() != rows || green.getNumberColumns() != cols) { showFeedback("All input images must have the same dimensions."); return; } WhiteboxRasterInfo blue = new WhiteboxRasterInfo(blueHeader); if (blue.getNumberRows() != rows || blue.getNumberColumns() != cols) { showFeedback("All input images must have the same dimensions."); return; } double redNoData = red.getNoDataValue(); double greenNoData = green.getNoDataValue(); double blueNoData = blue.getNoDataValue(); WhiteboxRaster intensity = new WhiteboxRaster( intensityHeader, "rw", redHeader, WhiteboxRaster.DataType.FLOAT, redNoData); WhiteboxRaster hue = new WhiteboxRaster(hueHeader, "rw", redHeader, WhiteboxRaster.DataType.FLOAT, redNoData); WhiteboxRaster saturation = new WhiteboxRaster( saturationHeader, "rw", redHeader, WhiteboxRaster.DataType.FLOAT, redNoData); // redMin = red.getDisplayMinimum(); // greenMin = green.getDisplayMinimum(); // blueMin = blue.getDisplayMinimum(); // // redRange = red.getDisplayMaximum() - redMin; // greenRange = green.getDisplayMaximum() - greenMin; // blueRange = blue.getDisplayMaximum() - blueMin; double overallMin = Math.min( Math.min(red.getDisplayMinimum(), green.getDisplayMinimum()), blue.getDisplayMinimum()); double overallMax = Math.max( Math.max(red.getDisplayMaximum(), green.getDisplayMaximum()), blue.getDisplayMaximum()); double range = overallMax - overallMin; double[] dataRed, dataGreen, dataBlue; for (row = 0; row < rows; row++) { dataRed = red.getRowValues(row); dataGreen = green.getRowValues(row); dataBlue = blue.getRowValues(row); for (col = 0; col < cols; col++) { redVal = dataRed[col]; greenVal = dataGreen[col]; blueVal = dataBlue[col]; if ((redVal != redNoData) && (greenVal != greenNoData) && (blueVal != blueNoData)) { r = (redVal - overallMin) / range; if (r < 0) { r = 0; } if (r > 1) { r = 1; } g = (greenVal - overallMin) / range; if (g < 0) { g = 0; } if (g > 1) { g = 1; } b = (blueVal - overallMin) / range; if (b < 0) { b = 0; } if (b > 1) { b = 1; } m = Math.min(Math.min(r, g), b); i = r + g + b; if (i == 3) { h = 0; } else if (m == b) { h = (g - b) / (i - 3 * b); } else if (m == r) { h = (b - r) / (i - 3 * r) + 1; } else { // m == g h = (r - g) / (i - 3 * g) + 2; } if (h <= 1) { s = (i - 3 * b) / i; } else if (h <= 2) { s = (i - 3 * r) / i; } else { // H <= 3 s = (i - 3 * g) / i; } intensity.setValue(row, col, i); hue.setValue(row, col, h); saturation.setValue(row, col, s); } else { intensity.setValue(row, col, redNoData); hue.setValue(row, col, redNoData); saturation.setValue(row, col, redNoData); } } if (cancelOp) { cancelOperation(); return; } progress = (float) (100f * row / (rows - 1)); updateProgress((int) progress); } intensity.addMetadataEntry("Created by the " + getDescriptiveName() + " tool."); intensity.addMetadataEntry("Created on " + new Date()); intensity.close(); hue.addMetadataEntry("Created by the " + getDescriptiveName() + " tool."); hue.addMetadataEntry("Created on " + new Date()); hue.close(); saturation.addMetadataEntry("Created by the " + getDescriptiveName() + " tool."); saturation.addMetadataEntry("Created on " + new Date()); saturation.close(); red.close(); green.close(); blue.close(); // returning a header file string displays the image. returnData(intensityHeader); returnData(hueHeader); returnData(saturationHeader); } catch (OutOfMemoryError oe) { myHost.showFeedback("An out-of-memory error has occurred during operation."); } catch (Exception e) { myHost.showFeedback("An error has occurred during operation. See log file for details."); myHost.logException("Error in " + getDescriptiveName(), e); } finally { updateProgress("Progress: ", 0); // tells the main application that this process is completed. amIActive = false; myHost.pluginComplete(); } }