Пример #1
0
  /**
   * Gets the current settings of FuzzyRoughSubsetEval
   *
   * @return an array of strings suitable for passing to setOptions()
   */
  public String[] getOptions() {
    Vector<String> result;

    result = new Vector<String>();

    result.add("-Z");
    result.add(
        (m_FuzzyMeasure.getClass().getName() + " " + Utils.joinOptions(m_FuzzyMeasure.getOptions()))
            .trim());

    result.add("-I");
    result.add(
        (m_Implicator.getClass().getName() + " " + Utils.joinOptions(m_Implicator.getOptions()))
            .trim());

    result.add("-T");
    result.add(
        (m_TNorm.getClass().getName() + " " + Utils.joinOptions(m_TNorm.getOptions())).trim());

    result.add("-R");
    result.add(
        (m_Similarity.getClass().getName() + " " + Utils.joinOptions(m_Similarity.getOptions()))
            .trim());

    return result.toArray(new String[result.size()]);
  }
Пример #2
0
 protected void resetOptions() {
   m_trainInstances = null;
   try {
     m_Similarity.setTNorm(new TNormLukasiewicz());
   } catch (Exception e) {
   }
 }
Пример #3
0
  /**
   * Generates an attribute evaluator. Has to initialise all fields of the evaluator that are not
   * being set via options.
   *
   * @param data set of instances serving as training data
   * @throws Exception if the evaluator has not been generated successfully
   */
  public void buildEvaluator(Instances data) throws Exception {

    // can evaluator handle data?
    getCapabilities().testWithFail(data);

    m_trainInstances = new Instances(data);
    m_trainInstances.deleteWithMissingClass();

    m_numAttribs = m_trainInstances.numAttributes();
    m_numInstances = m_trainInstances.numInstances();

    // if the data has no decision feature, m_classIndex is negative
    m_classIndex = m_trainInstances.classIndex();

    // supervised
    if (m_classIndex >= 0) {
      m_isNumeric = m_trainInstances.attribute(m_classIndex).isNumeric();

      if (m_isNumeric) {
        m_DecisionSimilarity = m_Similarity;
      } else m_DecisionSimilarity = m_SimilarityEq;
    }

    m_Similarity.setInstances(m_trainInstances);
    m_DecisionSimilarity.setInstances(m_trainInstances);
    m_SimilarityEq.setInstances(m_trainInstances);
    m_composition = m_Similarity.getTNorm();

    m_FuzzyMeasure.set(
        m_Similarity,
        m_DecisionSimilarity,
        m_TNorm,
        m_composition,
        m_Implicator,
        m_SNorm,
        m_numInstances,
        m_numAttribs,
        m_classIndex,
        m_trainInstances);
  }
Пример #4
0
  /**
   * Return a description of the fuzzy rough attribute evaluator.
   *
   * @return a description of the evaluator as a String.
   */
  public String toString() {
    StringBuffer text = new StringBuffer();

    if (m_trainInstances == null) {
      text.append("FRFS feature evaluator has not been built yet\n");
    } else {
      text.append("\nFuzzy rough feature selection\n\nMethod: " + m_FuzzyMeasure);
      text.append("\nSimilarity measure: " + m_Similarity);
      text.append("\nDecision similarity: " + m_DecisionSimilarity);
      text.append("\nImplicator: " + m_Implicator);
      text.append("\nT-Norm: " + m_TNorm + "\nRelation composition: " + m_Similarity.getTNorm());
      text.append("\n(S-Norm: " + m_SNorm + ")\n\n");
    }

    return text.toString();
  }