Пример #1
0
    private TwoDimTable createScoringHistoryTable(KMeansModel.KMeansOutput output) {
      List<String> colHeaders = new ArrayList<>();
      List<String> colTypes = new ArrayList<>();
      List<String> colFormat = new ArrayList<>();
      colHeaders.add("Timestamp");
      colTypes.add("string");
      colFormat.add("%s");
      colHeaders.add("Duration");
      colTypes.add("string");
      colFormat.add("%s");
      colHeaders.add("Iteration");
      colTypes.add("long");
      colFormat.add("%d");
      colHeaders.add("Avg. Change of Std. Centroids");
      colTypes.add("double");
      colFormat.add("%.5f");
      colHeaders.add("Within Cluster Sum Of Squares");
      colTypes.add("double");
      colFormat.add("%.5f");

      final int rows = output._avg_centroids_chg.length;
      TwoDimTable table =
          new TwoDimTable(
              "Scoring History",
              null,
              new String[rows],
              colHeaders.toArray(new String[0]),
              colTypes.toArray(new String[0]),
              colFormat.toArray(new String[0]),
              "");
      int row = 0;
      for (int i = 0; i < rows; i++) {
        int col = 0;
        assert (row < table.getRowDim());
        assert (col < table.getColDim());
        DateTimeFormatter fmt = DateTimeFormat.forPattern("yyyy-MM-dd HH:mm:ss");
        table.set(row, col++, fmt.print(output._training_time_ms[i]));
        table.set(row, col++, PrettyPrint.msecs(output._training_time_ms[i] - _start_time, true));
        table.set(row, col++, i);
        table.set(row, col++, output._avg_centroids_chg[i]);
        table.set(row, col++, output._history_withinss[i]);
        row++;
      }
      return table;
    }
Пример #2
0
  private TwoDimTable createScoringHistoryTable(SharedTreeModel.SharedTreeOutput _output) {
    List<String> colHeaders = new ArrayList<>();
    List<String> colTypes = new ArrayList<>();
    List<String> colFormat = new ArrayList<>();
    colHeaders.add("Timestamp");
    colTypes.add("string");
    colFormat.add("%s");
    colHeaders.add("Duration");
    colTypes.add("string");
    colFormat.add("%s");
    colHeaders.add("Number of Trees");
    colTypes.add("long");
    colFormat.add("%d");
    colHeaders.add("Training MSE");
    colTypes.add("double");
    colFormat.add("%.5f");
    if (_output.isClassifier()) {
      colHeaders.add("Training LogLoss");
      colTypes.add("double");
      colFormat.add("%.5f");
    }
    if (_output.getModelCategory() == ModelCategory.Binomial) {
      colHeaders.add("Training AUC");
      colTypes.add("double");
      colFormat.add("%.5f");
    }
    if (_output.getModelCategory() == ModelCategory.Binomial
        || _output.getModelCategory() == ModelCategory.Multinomial) {
      colHeaders.add("Training Classification Error");
      colTypes.add("double");
      colFormat.add("%.5f");
    }

    if (valid() != null) {
      colHeaders.add("Validation MSE");
      colTypes.add("double");
      colFormat.add("%.5f");
      if (_output.isClassifier()) {
        colHeaders.add("Validation LogLoss");
        colTypes.add("double");
        colFormat.add("%.5f");
      }
      if (_output.getModelCategory() == ModelCategory.Binomial) {
        colHeaders.add("Validation AUC");
        colTypes.add("double");
        colFormat.add("%.5f");
      }
      if (_output.isClassifier()) {
        colHeaders.add("Validation Classification Error");
        colTypes.add("double");
        colFormat.add("%.5f");
      }
    }

    int rows = 0;
    for (int i = 1; i < _output._scored_train.length; i++) {
      if (!Double.isNaN(_output._scored_train[i]._mse)) ++rows;
    }
    TwoDimTable table =
        new TwoDimTable(
            "Scoring History",
            null,
            new String[rows],
            colHeaders.toArray(new String[0]),
            colTypes.toArray(new String[0]),
            colFormat.toArray(new String[0]),
            "");
    int row = 0;
    for (int i = 1; i < _output._scored_train.length; i++) {
      if (Double.isNaN(_output._scored_train[i]._mse)) continue;
      int col = 0;
      assert (row < table.getRowDim());
      assert (col < table.getColDim());
      DateTimeFormatter fmt = DateTimeFormat.forPattern("yyyy-MM-dd HH:mm:ss");
      table.set(row, col++, fmt.print(_output._training_time_ms[i]));
      table.set(row, col++, PrettyPrint.msecs(_output._training_time_ms[i] - _start_time, true));
      table.set(row, col++, i);
      ScoreKeeper st = _output._scored_train[i];
      table.set(row, col++, st._mse);
      if (_output.isClassifier()) table.set(row, col++, st._logloss);
      if (_output.getModelCategory() == ModelCategory.Binomial) table.set(row, col++, st._AUC);
      if (_output.isClassifier()) table.set(row, col++, st._classError);

      if (_valid != null) {
        st = _output._scored_valid[i];
        table.set(row, col++, st._mse);
        if (_output.isClassifier()) table.set(row, col++, st._logloss);
        if (_output.getModelCategory() == ModelCategory.Binomial) table.set(row, col++, st._AUC);
        if (_output.isClassifier()) table.set(row, col++, st._classError);
      }
      row++;
    }
    return table;
  }