private TwoDimTable createScoringHistoryTable(KMeansModel.KMeansOutput output) { List<String> colHeaders = new ArrayList<>(); List<String> colTypes = new ArrayList<>(); List<String> colFormat = new ArrayList<>(); colHeaders.add("Timestamp"); colTypes.add("string"); colFormat.add("%s"); colHeaders.add("Duration"); colTypes.add("string"); colFormat.add("%s"); colHeaders.add("Iteration"); colTypes.add("long"); colFormat.add("%d"); colHeaders.add("Avg. Change of Std. Centroids"); colTypes.add("double"); colFormat.add("%.5f"); colHeaders.add("Within Cluster Sum Of Squares"); colTypes.add("double"); colFormat.add("%.5f"); final int rows = output._avg_centroids_chg.length; TwoDimTable table = new TwoDimTable( "Scoring History", null, new String[rows], colHeaders.toArray(new String[0]), colTypes.toArray(new String[0]), colFormat.toArray(new String[0]), ""); int row = 0; for (int i = 0; i < rows; i++) { int col = 0; assert (row < table.getRowDim()); assert (col < table.getColDim()); DateTimeFormatter fmt = DateTimeFormat.forPattern("yyyy-MM-dd HH:mm:ss"); table.set(row, col++, fmt.print(output._training_time_ms[i])); table.set(row, col++, PrettyPrint.msecs(output._training_time_ms[i] - _start_time, true)); table.set(row, col++, i); table.set(row, col++, output._avg_centroids_chg[i]); table.set(row, col++, output._history_withinss[i]); row++; } return table; }
private TwoDimTable createScoringHistoryTable(SharedTreeModel.SharedTreeOutput _output) { List<String> colHeaders = new ArrayList<>(); List<String> colTypes = new ArrayList<>(); List<String> colFormat = new ArrayList<>(); colHeaders.add("Timestamp"); colTypes.add("string"); colFormat.add("%s"); colHeaders.add("Duration"); colTypes.add("string"); colFormat.add("%s"); colHeaders.add("Number of Trees"); colTypes.add("long"); colFormat.add("%d"); colHeaders.add("Training MSE"); colTypes.add("double"); colFormat.add("%.5f"); if (_output.isClassifier()) { colHeaders.add("Training LogLoss"); colTypes.add("double"); colFormat.add("%.5f"); } if (_output.getModelCategory() == ModelCategory.Binomial) { colHeaders.add("Training AUC"); colTypes.add("double"); colFormat.add("%.5f"); } if (_output.getModelCategory() == ModelCategory.Binomial || _output.getModelCategory() == ModelCategory.Multinomial) { colHeaders.add("Training Classification Error"); colTypes.add("double"); colFormat.add("%.5f"); } if (valid() != null) { colHeaders.add("Validation MSE"); colTypes.add("double"); colFormat.add("%.5f"); if (_output.isClassifier()) { colHeaders.add("Validation LogLoss"); colTypes.add("double"); colFormat.add("%.5f"); } if (_output.getModelCategory() == ModelCategory.Binomial) { colHeaders.add("Validation AUC"); colTypes.add("double"); colFormat.add("%.5f"); } if (_output.isClassifier()) { colHeaders.add("Validation Classification Error"); colTypes.add("double"); colFormat.add("%.5f"); } } int rows = 0; for (int i = 1; i < _output._scored_train.length; i++) { if (!Double.isNaN(_output._scored_train[i]._mse)) ++rows; } TwoDimTable table = new TwoDimTable( "Scoring History", null, new String[rows], colHeaders.toArray(new String[0]), colTypes.toArray(new String[0]), colFormat.toArray(new String[0]), ""); int row = 0; for (int i = 1; i < _output._scored_train.length; i++) { if (Double.isNaN(_output._scored_train[i]._mse)) continue; int col = 0; assert (row < table.getRowDim()); assert (col < table.getColDim()); DateTimeFormatter fmt = DateTimeFormat.forPattern("yyyy-MM-dd HH:mm:ss"); table.set(row, col++, fmt.print(_output._training_time_ms[i])); table.set(row, col++, PrettyPrint.msecs(_output._training_time_ms[i] - _start_time, true)); table.set(row, col++, i); ScoreKeeper st = _output._scored_train[i]; table.set(row, col++, st._mse); if (_output.isClassifier()) table.set(row, col++, st._logloss); if (_output.getModelCategory() == ModelCategory.Binomial) table.set(row, col++, st._AUC); if (_output.isClassifier()) table.set(row, col++, st._classError); if (_valid != null) { st = _output._scored_valid[i]; table.set(row, col++, st._mse); if (_output.isClassifier()) table.set(row, col++, st._logloss); if (_output.getModelCategory() == ModelCategory.Binomial) table.set(row, col++, st._AUC); if (_output.isClassifier()) table.set(row, col++, st._classError); } row++; } return table; }