public static boolean are_d_connected(AbstractVariable x1, AbstractVariable x2, Vector evidence) throws RemoteException { // Find all paths between x1 and x2, then see if there is some path which is // d-connecting given the evidence. If so, return true, otherwise false. Hashtable path_sets = new Hashtable(); // HEY !!! THIS OUGHT TO BE CACHED SOMEWHERE !!! PathAnalysis.compile_paths(x1, x2, path_sets); Vector path_set = (Vector) path_sets.get(new VariablePair(x1, x2)); if (path_set == null) // No connections whatsoever. return false; Enumeration path_set_enum = path_set.elements(); while (path_set_enum.hasMoreElements()) { AbstractVariable[] path = (AbstractVariable[]) path_set_enum.nextElement(); if (is_d_connecting(path, evidence)) { System.err.print("PathAnalysis.are_d_connected: path "); int i; for (i = 0; i < path.length; i++) System.err.print(path[i].get_name() + " "); System.err.print("is d-connected given evidence "); for (i = 0; i < evidence.size(); i++) System.err.print(((AbstractVariable) evidence.elementAt(i)).get_name() + " "); System.err.println(""); return true; } } return false; }
/** * Check the helpers currently stored in the helper cache to see if any of them can handle the * sequence we've just been given. This avoids pinging the belief network context to get a helper * list. */ public static Class find_helper_class1( Vector seq, String helper_type, int[] max_class_score, int[] max_count_score) throws ClassNotFoundException { int[] class_score1 = new int[1], count_score1 = new int[1]; max_class_score[0] = -1; max_count_score[0] = -1; Class cmax_score = null; for (Enumeration e = helper_cache.keys(); e.hasMoreElements(); ) { try { HelperCacheKey key = (HelperCacheKey) e.nextElement(); if (!key.helper_type.equals(helper_type)) continue; Class c = (Class) helper_cache.get(key); SeqTriple[] sm = (SeqTriple[]) invoke_description(c); if (sm == null) continue; // apparently not a helper class if (MatchClassPattern.matches(sm, seq, class_score1, count_score1)) { if (class_score1[0] > max_class_score[0] || (class_score1[0] == max_class_score[0] && count_score1[0] > max_count_score[0])) { cmax_score = c; max_class_score[0] = class_score1[0]; max_count_score[0] = count_score1[0]; } } } catch (Exception e2) { } // eat it; stagger forward } if (Global.debug > 1) System.err.println( "PiHelperLoader.find_helper_class1: helper " + (cmax_score == null ? "is NOT" : "is") + " in cache."); if (cmax_score == null) // no luck; try to get a helper list from the bnc & plunge ahead return find_helper_class0(seq, helper_type, max_class_score, max_count_score); else // success! return cmax_score; }
/** * This method returns a <tt>Class</tt> for a helper which can handle the list of distributions * specified by <tt>seq1</tt>. We maintain a cache of recently-loaded helpers, so check the cache * before going to the trouble of searching for a helper. The cache is blown away every * <tt>HELPER_CACHE_REFRESH</tt> seconds. * * <p>If we can't find a helper in the cache, we must search through the list of available helpers * to find an appropriate one. First try to find helper using class sequence as specified by * <tt>seq</tt>. Whether or not that succeeds, promote any <tt>Gaussian</tt> in the sequence to * <tt>MixGaussians</tt>, and try again. If we get a better match on the second try, return the * helper thus found. */ public static Class find_helper_class(Vector seq1, String helper_type) throws ClassNotFoundException { // Let's see if an appropriate helper is in the cache. // If the cache is too old, empty it and search for the helper anew. if (System.currentTimeMillis() - cache_timestamp > HELPER_CACHE_REFRESH) { helper_cache = new Hashtable(); cache_timestamp = System.currentTimeMillis(); // Go on and search for appropriate helper. } else { HelperCacheKey key = new HelperCacheKey(helper_type, seq1); Class helper_class = (Class) helper_cache.get(key); if (helper_class != null) { if (Global.debug > -1) System.err.println( "PiHelperLoader.find_helper_class: found helper class: " + helper_class + "; no need to search."); return helper_class; } // else no luck; we have to search for helper. } // Well, we didn't find a helper in the cache, so let's go to work. if (Global.debug > -1) System.err.println( "PiHelperLoader.find_helper_class: DID NOT FIND HELPER CLASS; NOW SEARCH."); Class c1 = null, c2 = null; ClassNotFoundException cnfe1 = null, cnfe2 = null; int[] class_score1 = new int[1], count_score1 = new int[1]; int[] class_score2 = new int[1], count_score2 = new int[1]; try { c1 = find_helper_class1(seq1, helper_type, class_score1, count_score1); } catch (ClassNotFoundException e) { cnfe1 = e; } // hang on, we may need to re-throw later. Class gaussian_class = Class.forName("riso.distributions.Gaussian"); MixGaussians mog = new MixGaussians(1, 1); Vector seq2 = new Vector(seq1.size()); for (int i = 0; i < seq1.size(); i++) if (gaussian_class.isAssignableFrom((Class) seq1.elementAt(i))) seq2.addElement(mog.getClass()); else seq2.addElement(seq1.elementAt(i)); try { c2 = find_helper_class1(seq2, helper_type, class_score2, count_score2); } catch (ClassNotFoundException e) { cnfe2 = e; } if (cnfe1 == null && cnfe2 == null) { // Both matched; see which one fits better. // Break ties in favor of the helper for non-promoted messages. if (class_score1[0] >= class_score2[0] || (class_score1[0] == class_score2[0] && count_score1[0] >= count_score2[0])) { if (Global.debug > 1) System.err.println( "\taccept helper " + c1 + " for non-promoted classes instead of " + c2); if (Global.debug > 1) System.err.println( "\t\t" + class_score1[0] + ", " + class_score2[0] + "; " + count_score1[0] + ", " + count_score2[0]); helper_cache.put(new HelperCacheKey(helper_type, seq1), c1); return c1; } else { if (Global.debug > 1) System.err.println("\taccept helper " + c2 + " for promoted classes instead of " + c1); if (Global.debug > 1) System.err.println( "\t\t" + class_score1[0] + ", " + class_score2[0] + "; " + count_score1[0] + ", " + count_score2[0]); helper_cache.put(new HelperCacheKey(helper_type, seq1), c2); return c2; } } else if (cnfe1 == null && cnfe2 != null) { // Only the first try matched, return it. helper_cache.put(new HelperCacheKey(helper_type, seq1), c1); return c1; } else if (cnfe1 != null && cnfe2 == null) { // Only the second try matched, return it. helper_cache.put(new HelperCacheKey(helper_type, seq1), c2); return c2; } else { // Neither try matched. Re-throw the exception generated by the first try. throw cnfe1; } }
public static void main(String[] args) { boolean do_compile_all = false; String bn_name = "", x1_name = "", x2_name = ""; Vector evidence_names = new Vector(); for (int i = 0; i < args.length; i++) { if (args[i].charAt(0) != '-') continue; switch (args[i].charAt(1)) { case 'b': bn_name = args[++i]; break; case 'a': do_compile_all = true; break; case 'x': if (args[i].charAt(2) == '1') x1_name = args[++i]; else if (args[i].charAt(2) == '2') x2_name = args[++i]; else System.err.println("PathAnalysis.main: " + args[i] + " -- huh???"); break; case 'e': evidence_names.addElement(args[++i]); break; default: System.err.println("PathAnalysis.main: " + args[i] + " -- huh???"); } } try { BeliefNetworkContext bnc = new BeliefNetworkContext(null); bnc.add_path("/bechtel/users10/krarti/dodier/belief-nets/assorted"); AbstractBeliefNetwork bn = bnc.load_network(bn_name); Hashtable path_sets; Enumeration p; if ((p = PathAnalysis.has_directed_cycle(bn)) == null) System.err.println("PathAnalysis: no directed cycles found in " + bn_name); else { System.err.println("PathAnalysis.main: " + bn_name + " has a directed cycle; quit."); System.err.print(" cycle is: "); while (p.hasMoreElements()) { System.err.print(((AbstractVariable) p.nextElement()).get_name()); if (p.hasMoreElements()) System.err.print(" -> "); else System.err.println(""); } System.exit(1); } Vector evidence = new Vector(); if (evidence_names.size() > 0) { for (int i = 0; i < evidence_names.size(); i++) evidence.addElement(bn.name_lookup((String) (evidence_names.elementAt(i)))); } if (do_compile_all) { path_sets = PathAnalysis.compile_all_paths(bn); } else { AbstractVariable x1 = (AbstractVariable) bn.name_lookup(x1_name); AbstractVariable x2 = (AbstractVariable) bn.name_lookup(x2_name); path_sets = new Hashtable(); PathAnalysis.compile_paths(x1, x2, path_sets); if (PathAnalysis.are_d_connected(x1, x2, evidence)) System.err.print( x1.get_name() + " and " + x2.get_name() + " are d-connected given evidence "); else System.err.print( x1.get_name() + " and " + x2.get_name() + " are NOT d-connected given evidence "); for (int i = 0; i < evidence.size(); i++) System.err.print(((AbstractVariable) evidence.elementAt(i)).get_name() + " "); System.err.println(""); } System.err.println("PathAnalysis.main: results of path finding:"); AbstractVariable[] u = bn.get_variables(); for (int i = 0; i < u.length; i++) { System.err.println(" --- paths from: " + u[i].get_name() + " ---"); for (int j = i + 1; j < u.length; j++) { VariablePair vp = new VariablePair(u[i], u[j]); Vector path_set = (Vector) path_sets.get(vp); if (path_set == null) continue; Enumeration path_set_enum = path_set.elements(); while (path_set_enum.hasMoreElements()) { AbstractVariable[] path = (AbstractVariable[]) path_set_enum.nextElement(); System.err.print(" path: "); for (int k = 0; k < path.length; k++) System.err.print(path[k].get_name() + " "); System.err.println(""); } } } System.exit(0); } catch (Exception e) { System.err.println("PathAnalysis.main:"); e.printStackTrace(); System.exit(1); } }