// ## operation writeChemkinSpecies(ReactionModel,SystemSnapshot) public static String writeChemkinSpecies( ReactionModel p_reactionModel, SystemSnapshot p_beginStatus) { // #[ operation writeChemkinSpecies(ReactionModel,SystemSnapshot) StringBuilder result = new StringBuilder(); result.append("SPECIES\n"); CoreEdgeReactionModel cerm = (CoreEdgeReactionModel) p_reactionModel; // write inert gas for (Iterator iter = p_beginStatus.getInertGas(); iter.hasNext(); ) { String name = (String) iter.next(); result.append('\t' + name + '\n'); } // write species for (Iterator iter = cerm.getSpecies(); iter.hasNext(); ) { Species spe = (Species) iter.next(); result.append('\t' + spe.getChemkinName() + '\n'); } result.append("END\n"); return result.toString(); // #] }
/* * public HashMap getLeafElements() { HashMap map = new HashMap(); Object[] * elts = dataElements.values().toArray(); for (int j=0; j<elts.length; j++) * { PDMDataElement data = (PDMDataElement) elts[j]; * map.put(data.getID(),data); } Object[] ops = * operations.values().toArray(); for (int i=0; i<ops.length; i++){ * PDMOperation op = (PDMOperation) ops[i]; if * (!(op.getInputElements().isEmpty())){ HashMap outs = * op.getOutputElements(); Object[] outArray = outs.values().toArray(); for * (int j=0; j<outArray.length; j++) { PDMDataElement d = (PDMDataElement) * outArray[j]; map.remove(d.getID()); } } } return map; } */ public HashMap getLeafElements() { HashMap result = new HashMap(); HashSet leafOps = getLeafOperations(); if (!(leafOps.isEmpty())) { Iterator it = leafOps.iterator(); while (it.hasNext()) { PDMOperation op = (PDMOperation) it.next(); PDMDataElement data = op.getOutputElement(); result.put(data.getID(), data); } } else { Object[] elts = dataElements.values().toArray(); for (int j = 0; j < elts.length; j++) { PDMDataElement data = (PDMDataElement) elts[j]; result.put(data.getID(), data); } Object[] ops = operations.values().toArray(); for (int i = 0; i < ops.length; i++) { PDMOperation op = (PDMOperation) ops[i]; HashMap outs = op.getOutputElements(); Object[] outArray = outs.values().toArray(); for (int j = 0; j < outArray.length; j++) { PDMDataElement d = (PDMDataElement) outArray[j]; result.remove(d.getID()); } } } return result; }
// convert coordinates to relative coordinates with the top-left one as (0,0) public void convertToRelativePositions() { LayoutBox box = getExactLayoutBox(); // System.out.println("Box // ("+box.topleft.x+","+box.topleft.y+");("+(box.topleft.x+box.width)+","+(box.topleft.y+box.height)); Iterator<NodeLayout> e = nodes.iterator(); NodeLayout nl; while (e.hasNext()) { nl = e.next(); /* Debug code if(nl.x<box.topleft.x || nl.y<box.topleft.y || nl.x>(box.topleft.x+box.width) || nl.y>(box.topleft.y+box.height)){ System.out.println("Invalid node "+nl.x+","+nl.y); } //*/ nl.x = nl.x - box.topleft.x; nl.y = nl.y - box.topleft.y; } Iterator<EdgeLayout> e2 = edges.iterator(); EdgeLayout el; while (e2.hasNext()) { el = e2.next(); for (LayoutPoint lp : el.bends) { lp.x = lp.x - box.topleft.x; lp.y = lp.y - box.topleft.y; } } }
/** * Writes the model to DOT. * * @param bw The writer * @throws IOException If writing fails */ public void writeToDot(Writer bw) throws IOException { // super.writeToDot(bw); // Preamble of dot file bw.write( "digraph G {ranksep=\".3\"; fontsize=\"8\"; remincross=true; margin=\"0.0,0.0\"; rankdir=TB; "); bw.write("fontname=\"Arial\"; \n"); bw.write("edge [arrowsize=\"0.5\"];\n"); bw.write("node [fontname=\"Arial\",fontsize=\"8\"];\n"); // Add the Data Element nodes Iterator it = getVerticeList().iterator(); while (it.hasNext()) { Object object = it.next(); if (object instanceof PDMDataElement) { ((PDMDataElement) object).writeToDot(bw, this); } } // Add all edges it = operations.values().iterator(); while (it.hasNext()) { Object object = it.next(); if (object instanceof PDMOperation) { ((PDMOperation) object).writeToDot(bw, this); } } bw.write("\n}\n"); }
public void flipLayoutLeftRight() { LayoutBox box = getExactLayoutBox(); Iterator<NodeLayout> ne = nodes.iterator(); while (ne.hasNext()) { NodeLayout nl = ne.next(); if (nl.processID.equals("null")) { nl.x = box.topleft.x + (box.width - (nl.x - box.topleft.x)) - 60; // minus 60 which is the width of process node's box, since using upperleft // coor } else if (isSecondary(nl)) { nl.x = box.topleft.x + (box.width - (nl.x - box.topleft.x)) - 60; } else { nl.x = box.topleft.x + (box.width - (nl.x - box.topleft.x)) - 20; } } Iterator<EdgeLayout> e2 = edges.iterator(); EdgeLayout el; while (e2.hasNext()) { el = e2.next(); for (LayoutPoint lp : el.bends) { lp.x = box.topleft.x + (box.width - (lp.x - box.topleft.x)); } } }
public static String writeChemkinPdepReactions(ReactionSystem rs) { // #[ operation writeChemkinReactions(ReactionModel) StringBuilder result = new StringBuilder(); result.append("REACTIONS KCAL/MOLE\n"); LinkedList rList = new LinkedList(); LinkedList troeList = new LinkedList(); LinkedList tbrList = new LinkedList(); LinkedList duplicates = new LinkedList(); LinkedList lindeList = new LinkedList(); if (rs.dynamicSimulator instanceof JDASPK) { rList = ((JDASPK) rs.dynamicSimulator).rList; troeList = ((JDASPK) rs.dynamicSimulator).troeList; tbrList = ((JDASPK) rs.dynamicSimulator).thirdBodyList; duplicates = ((JDASPK) rs.dynamicSimulator).duplicates; lindeList = ((JDASPK) rs.dynamicSimulator).lindemannList; } else if (rs.dynamicSimulator instanceof JDASSL) { rList = ((JDASSL) rs.dynamicSimulator).rList; troeList = ((JDASSL) rs.dynamicSimulator).troeList; tbrList = ((JDASSL) rs.dynamicSimulator).thirdBodyList; duplicates = ((JDASSL) rs.dynamicSimulator).duplicates; lindeList = ((JDASSL) rs.dynamicSimulator).lindemannList; } for (Iterator iter = rList.iterator(); iter.hasNext(); ) { Reaction r = (Reaction) iter.next(); // 10/26/07 gmagoon: changed to avoid use of Global.temperature; I am using // getPresentTemperature for the time being; it is possible that // getInitialStatus.getTemperature or something similar may be more appropriate result.append(r.toChemkinString(rs.getPresentTemperature()) + "\n"); // result.append(r.toChemkinString(Global.temperature)+"\n"); } for (Iterator iter = troeList.iterator(); iter.hasNext(); ) { Reaction r = (Reaction) iter.next(); result.append(r.toChemkinString(rs.getPresentTemperature()) + "\n"); // result.append(r.toChemkinString(Global.temperature)+"\n"); } for (Iterator iter = tbrList.iterator(); iter.hasNext(); ) { Reaction r = (Reaction) iter.next(); result.append(r.toChemkinString(rs.getPresentTemperature()) + "\n"); // result.append(r.toChemkinString(Global.temperature)+"\n"); } for (Iterator iter = duplicates.iterator(); iter.hasNext(); ) { Reaction r = (Reaction) iter.next(); result.append(r.toChemkinString(rs.getPresentTemperature()) + "\n\tDUP\n"); // result.append(r.toChemkinString(Global.temperature)+"\n\tDUP\n"); } for (Iterator iter = lindeList.iterator(); iter.hasNext(); ) { Reaction r = (Reaction) iter.next(); result.append(r.toChemkinString(rs.getPresentTemperature()) + "\n"); } result.append("END\n"); return result.toString(); // #] }
/** * Remove an action from this workflow completely. * * <p>This method will check global actions and all steps. * * @return true if the action was successfully removed, false if it was not found */ public boolean removeAction(ActionDescriptor actionToRemove) { // global actions for (Iterator iterator = getGlobalActions().iterator(); iterator.hasNext(); ) { ActionDescriptor actionDescriptor = (ActionDescriptor) iterator.next(); if (actionDescriptor.getId() == actionToRemove.getId()) { getGlobalActions().remove(actionDescriptor); return true; } } // steps for (Iterator iterator = getSteps().iterator(); iterator.hasNext(); ) { StepDescriptor stepDescriptor = (StepDescriptor) iterator.next(); ActionDescriptor actionDescriptor = stepDescriptor.getAction(actionToRemove.getId()); if (actionDescriptor != null) { stepDescriptor.getActions().remove(actionDescriptor); return true; } } return false; }
public void selectNext() { Iterator i = new SelectionIterator(this); if (m_actives.size() == 1) { boolean isFound = false; // loop the iterator in reverse order of drawing while (i.hasNext()) { GlyphObject object = (GlyphObject) i.next(); if (m_actives.isSelected(object)) { isFound = true; continue; } // if if (!isFound) { continue; } // if m_actives.unselectAll(); m_actives.addActive(object); return; } // while i } // if i = new SelectionIterator(this); if (i.hasNext()) { GlyphObject object = (GlyphObject) i.next(); m_actives.unselectAll(); m_actives.addActive(object); return; } // if }
public ActionDescriptor getAction(int id) { // check global actions for (Iterator iterator = globalActions.iterator(); iterator.hasNext(); ) { ActionDescriptor actionDescriptor = (ActionDescriptor) iterator.next(); if (actionDescriptor.getId() == id) { return actionDescriptor; } } // check steps for (Iterator iterator = steps.iterator(); iterator.hasNext(); ) { StepDescriptor stepDescriptor = (StepDescriptor) iterator.next(); ActionDescriptor actionDescriptor = stepDescriptor.getAction(id); if (actionDescriptor != null) { return actionDescriptor; } } // check initial actions, which we now must have unique id's for (Iterator iterator = initialActions.iterator(); iterator.hasNext(); ) { ActionDescriptor actionDescriptor = (ActionDescriptor) iterator.next(); if (actionDescriptor.getId() == id) { return actionDescriptor; } } return null; }
/** * Returns a new descriptor eqiuvalent to this+D. Remember, composition is not commutative for all * attributes, and may not exist for some. To compose, remember to call * {@linkDescriptor#isComposable() isComposable} first and try both <code>A.compose (B)</code> and * <code>B.compose (A)</code>. * * @param D The Descriptor to compose with this Descriptor. * @param scope The attribute scope and mapping. * @return A new Descriptor that is equivalent to the composition of this and the argument D. * @throws BadDataException if the compose semantics are not correct. * @throws UncomposableException this instance of the descriptor cannot be composed. Check * isComposable! */ public Descriptor compose(Descriptor D, EvaluationParameters.ScopeRules scope) throws BadDataException, UncomposableException { DescAggregate temp = (DescAggregate) this.clone(); // Unify Descriptions and Spans temp.span = temp.span.union(D.getFrameSpan()); if (D.getClass().equals(DescSingle.class)) { if (idList.contains(D.getID())) throw new BadDataException("Attempting to compose the same descriptor multiple times"); else temp.idList.add(D.getID()); } else { // First, check to see if there are any dup ID numbers Iterator iterA = idList.iterator(); Iterator iterB = ((TreeSet) D.getID()).iterator(); Comparable A = (Comparable) iterA.next(); Comparable B = (Comparable) iterB.next(); /// difference will be negative iff A < B, and positive iff A > B. // I wish java had operator overloading. I really do. double difference = A.compareTo(B); while (iterA.hasNext() && iterB.hasNext() && (difference != 0)) { while ((difference < 0) && (iterA.hasNext() && iterB.hasNext())) { A = (Comparable) iterA.next(); difference = A.compareTo(B); } while ((difference > 0) && (iterA.hasNext() && iterB.hasNext())) { B = (Comparable) iterB.next(); difference = A.compareTo(B); } } if (difference == 0) // If there was a dup ID num, return 0 throw new BadDataException("Attempting to compose the same descriptor multiple times"); temp.idList.addAll(((DescAggregate) D).idList); } // Unify Attributes String errMsg = null; for (Iterator iter = scope.getInScopeAttributesFor(temp); iter.hasNext(); ) { String currAttrName = (String) iter.next(); int i = temp.getAttributeIndex(currAttrName, scope.getMap()); try { temp.attributes[i] = Attribute.compose( this.span, this.getAttribute(currAttrName, scope.getMap()), D.span, D.getAttribute(currAttrName, scope.getMap())); } catch (UncomposableException ux) { if (errMsg == null) { errMsg = ux.getMessage(); } else { errMsg += "\n" + ux.getMessage(); } } } if (errMsg != null) System.err.println(errMsg + "\n fix your .epf"); return temp; }
/** * @return exact rectangle box bounding all the center points of the nodes and all the bend * points. */ public LayoutBox getExactLayoutBox() { Iterator<NodeLayout> e = nodes.iterator(); double tlx = 0, tly = 0, brx = 0, bry = 0; // top left, bottom right NodeLayout nl; if (e.hasNext()) { nl = e.next(); tlx = nl.x; tly = nl.y; brx = nl.x; bry = nl.y; } while (e.hasNext()) { nl = e.next(); if (nl.x < tlx) { tlx = nl.x; } if (nl.x > brx) { brx = nl.x; } if (nl.y < tly) { tly = nl.y; } if (nl.y > bry) { bry = nl.y; } } Iterator<EdgeLayout> ee = edges.iterator(); Iterator<LayoutPoint> be; LayoutPoint lp; EdgeLayout el; while (ee.hasNext()) { el = ee.next(); be = el.bends.iterator(); while (be.hasNext()) { lp = be.next(); if (lp.x < tlx) { tlx = lp.x; } if (lp.x > brx) { brx = lp.x; } if (lp.y < tly) { tly = lp.y; } if (lp.y > bry) { bry = lp.y; } } } return new LayoutBox(tlx, tly, brx - tlx, bry - tly); }
public static String writeGridOfRateCoeffs(ReactionModel p_reactionModel) { StringBuilder result = new StringBuilder(); LinkedList pDepList = new LinkedList(); CoreEdgeReactionModel cerm = (CoreEdgeReactionModel) p_reactionModel; for (Iterator iter = PDepNetwork.getNetworks().iterator(); iter.hasNext(); ) { PDepNetwork pdn = (PDepNetwork) iter.next(); for (ListIterator pdniter = pdn.getNetReactions().listIterator(); pdniter.hasNext(); ) { PDepReaction rxn = (PDepReaction) pdniter.next(); if (cerm.categorizeReaction(rxn) != 1) continue; // check if this reaction is not already in the list and also check if this reaction has a // reverse reaction // which is already present in the list. if (rxn.getReverseReaction() == null) rxn.generateReverseReaction(); if (!rxn.reactantEqualsProduct() && !pDepList.contains(rxn) && !pDepList.contains(rxn.getReverseReaction())) { pDepList.add(rxn); } } } Temperature[] tempsUsedInFame = PDepRateConstant.getTemperatures(); int numTemps = tempsUsedInFame.length; Pressure[] pressUsedInFame = PDepRateConstant.getPressures(); int numPress = pressUsedInFame.length; for (int i = 0; i < numTemps; i++) { for (int j = 0; j < numPress; j++) { result.append( "T=" + tempsUsedInFame[i].getK() + "K,P=" + pressUsedInFame[j].getBar() + "bar\t"); } result.append("\n"); } result.append("\n"); for (Iterator iter = pDepList.iterator(); iter.hasNext(); ) { PDepReaction r = (PDepReaction) iter.next(); result.append(r.toString() + "\n"); double[][] rates = new double[numTemps][numPress]; rates = r.getPDepRate().getRateConstants(); for (int i = 0; i < numTemps; i++) { for (int j = 0; j < numPress; j++) { result.append(rates[i][j] + "\t"); } result.append("\n"); } result.append("\n"); } return result.toString(); }
public String toString() { if (isEmpty()) { return ""; } StringBuffer sb = new StringBuffer(); Iterator<NodeLayout> e = nodes.iterator(); while (e.hasNext()) sb.append((e.next()).toString()); sb.append("\n"); Iterator<EdgeLayout> ee = edges.iterator(); while (ee.hasNext()) sb.append((ee.next()).toString()); return sb.toString(); }
// ## operation writeChemkinReactions(ReactionModel) // 10/26/07 gmagoon: changed to take temperature as parameter (it doesn't seem like this method is // currently used anywhere) public static String writeChemkinReactions( ReactionModel p_reactionModel, Temperature p_temperature) { // #[ operation writeChemkinReactions(ReactionModel) StringBuilder result = new StringBuilder(); result.append("REACTIONS KCAL/MOLE\n"); CoreEdgeReactionModel cerm = (CoreEdgeReactionModel) p_reactionModel; LinkedHashSet all = cerm.getReactedReactionSet(); HashSet hs = new HashSet(); int numfor = 0; int numrev = 0; int numdup = 0; int numnorev = 0; for (Iterator iter = all.iterator(); iter.hasNext(); ) { Reaction rxn = (Reaction) iter.next(); if (rxn.isForward()) { result.append( " " + rxn.toChemkinString(p_temperature) + "\n"); // 10/26/07 gmagoon: changed to avoid use of Global.temperature // result.append(" " + rxn.toChemkinString(Global.temperature) + "\n"); } } result.append("END\n"); return result.toString(); // #] }
public PDMState checkIfStateExists( PDMStateSpace statespace, HashSet data, HashSet exec, HashSet failed) { PDMState result = null; boolean bool = false; HashSet states = statespace.getStates(); Iterator it = states.iterator(); while (it.hasNext() && !bool) { PDMState state2 = (PDMState) it.next(); boolean one = false; boolean two = false; boolean three = false; HashSet data2 = state2.dataElements; HashSet exec2 = state2.executedOperations; HashSet failed2 = state2.failedOperations; one = hashSetContainsSameDataElements(data, data2); two = hashSetContainsSameOperations(exec, exec2); three = hashSetContainsSameOperations(failed, failed2); if (one && two && three) { bool = true; result = state2; } } return result; }
private String unirMapeos(LinkedHashMap<String, String> mapa, Object[] descripciones) { // mapa(llave,punto) // descripciones en el mismo orden que el mapeo String comillas = "\""; StringBuilder builder = new StringBuilder(); Iterator<String> iterador = mapa.keySet().iterator(); int indice = 0; while (iterador.hasNext()) { String llave = iterador.next(); String puntaje = mapa.get(llave); String descripcion = descripciones[indice].toString().equals("null") ? "" : descripciones[indice].toString(); builder.append(comillas + descripcion + comillas + "," + comillas + puntaje + comillas + ","); indice++; } return builder.toString(); }
public void display(Graphics2D g, AffineTransform a_trans) { Iterator i = createIterator(); while (i.hasNext()) { GlyphObject object = (GlyphObject) i.next(); object.display(g, a_trans); } // while }
public static void write() { DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance(); Document doc; System.out.println("Writing patient data file\n"); try { DocumentBuilder builder = factory.newDocumentBuilder(); doc = builder.newDocument(); Element root = doc.createElement("patientdata"); root.appendChild(XMLInterface.nl(doc)); // get first PatientData from DataStore Iterator<PatientDataStore> pdsIt = GlobalVars.pds.iterator(); while (pdsIt.hasNext()) { PatientDataStore pds = pdsIt.next(); Node n = pds.createXMLNode(doc); XMLInterface.addNode(doc, root, n, 0); } root.normalize(); // create junk to write it out (see java xml tutorial) TransformerFactory tFactory = TransformerFactory.newInstance(); Transformer transformer = tFactory.newTransformer(); DOMSource src = new DOMSource(root); StreamResult result = new StreamResult(new File(GlobalVars.XMLDataFile)); transformer.transform(src, result); } catch (Exception e) { System.err.println("Error WRITING xml patient data file"); e.printStackTrace(); } }
/** * Returns a String representation of the <code><saml:Attribute></code> element. * * @param includeNS Determines whether or not the namespace qualifier is prepended to the Element * when converted * @param declareNS Determines whether or not the namespace is declared within the Element. * @return A string containing the valid XML for this element */ public String toString(boolean includeNS, boolean declareNS) { StringBuffer result = new StringBuffer(1000); String prefix = ""; String uri = ""; if (includeNS) { prefix = SAMLConstants.ASSERTION_PREFIX; } if (declareNS) { uri = SAMLConstants.assertionDeclareStr; } result .append("<") .append(prefix) .append("Attribute") .append(uri) .append(" AttributeName=\"") .append(_attributeName) .append("\" AttributeNamespace=\"") .append(_attributeNameSpace) .append("\">\n"); Iterator iter = _attributeValue.iterator(); while (iter.hasNext()) { result.append(XMLUtils.printAttributeValue((Element) iter.next(), prefix)).append("\n"); } result.append("</").append(prefix).append("Attribute>\n"); return result.toString(); }
/** * Constructs an instance of <code>Attribute</code>. * * @param name A String representing <code>AttributeName</code> (the name of the attribute). * @param nameSpace A String representing the namespace in which <code>AttributeName</code> * elements are interpreted. * @param values A List of DOM element representing the <code>AttributeValue</code> object. * @exception SAMLException if there is an error in the sender or in the element definition. */ public Attribute(String name, String nameSpace, List values) throws SAMLException { super(name, nameSpace); if (values == null || values.isEmpty()) { if (SAMLUtilsCommon.debug.messageEnabled()) { SAMLUtilsCommon.debug.message("Attribute: AttributeValue is" + "required."); } throw new SAMLRequesterException(SAMLUtilsCommon.bundle.getString("nullInput")); } if (_attributeValue == null) { _attributeValue = new ArrayList(); } // Make sure this is a list of AttributeValue Iterator iter = values.iterator(); String tag = null; while (iter.hasNext()) { tag = ((Element) iter.next()).getLocalName(); if ((tag == null) || (!tag.equals("AttributeValue"))) { if (SAMLUtilsCommon.debug.messageEnabled()) { SAMLUtilsCommon.debug.message("AttributeValue: wrong input."); } throw new SAMLRequesterException(SAMLUtilsCommon.bundle.getString("wrongInput")); } } _attributeValue = values; }
/** * This method exports the single pattern decision instance to the XML. It MUST be called by an * XML exporter, as this will not have a complete header. * * @param ratDoc The ratDoc generated by the XML exporter * @return the SAX representation of the object. */ public Element toXML(Document ratDoc) { Element decisionE; RationaleDB db = RationaleDB.getHandle(); // Now, add pattern to doc String entryID = db.getRef(this); if (entryID == null) { entryID = db.addPatternDecisionRef(this); } decisionE = ratDoc.createElement("DR:patternDecision"); decisionE.setAttribute("rid", entryID); decisionE.setAttribute("name", name); decisionE.setAttribute("type", type.toString()); decisionE.setAttribute("phase", devPhase.toString()); decisionE.setAttribute("status", status.toString()); // decisionE.setAttribute("artifact", artifact); Element descE = ratDoc.createElement("description"); Text descText = ratDoc.createTextNode(description); descE.appendChild(descText); decisionE.appendChild(descE); // Add child pattern references... Iterator<Pattern> cpi = candidatePatterns.iterator(); while (cpi.hasNext()) { Pattern cur = cpi.next(); Element curE = ratDoc.createElement("refChildPattern"); Text curText = ratDoc.createTextNode("p" + new Integer(cur.getID()).toString()); curE.appendChild(curText); decisionE.appendChild(curE); } return decisionE; }
public static void exportThis( String target_sea_state_set, String target_sea_state_datum, String[] sea_state_headings, IntegerTargetTypeLookup states, Element envElement, Document doc) { // ok, put us into the element org.w3c.dom.Element itt = doc.createElement(target_sea_state_set); // get on with the name attribute Double unknown = states.getUnknownResult(); if (unknown != null) itt.setAttribute(UNKNOWN_TYPE, writeThis(unknown.doubleValue())); // now the matrix of sea states Collection<String> keys = states.getNames(); for (Iterator<String> iter = keys.iterator(); iter.hasNext(); ) { String thisN = (String) iter.next(); // ok, cycle through the sea states for this participant NamedList thisList = states.getThisSeries(thisN); exportThisSeries(thisN, target_sea_state_datum, thisList, sea_state_headings, itt, doc); } envElement.appendChild(itt); }
private static void exportThisSeries( String name, String target_sea_state_datum, NamedList thisList, String[] sea_state_headings, Element itt, Document doc) { // ok, put us into the element org.w3c.dom.Element datum = doc.createElement(target_sea_state_datum); datum.setAttribute("Type", name); // and step through its values Collection<Double> indices = thisList.getValues(); int ctr = 0; for (Iterator<Double> iter = indices.iterator(); iter.hasNext(); ) { Double val = (Double) iter.next(); if (val != null) { datum.setAttribute(sea_state_headings[ctr], writeThis(val.doubleValue())); ctr++; } else break; } itt.appendChild(datum); }
/** * Reload the composite nodes of the circuit, this is recursive * * @param g the graphics that will paint the node * @throws CircuitLoadingException if the internal circuit can not be loaded */ public void reloadCompositeNodes(Graphics g) throws CircuitLoadingException { for (iterNodes = this.nodes.iterator(); iterNodes.hasNext(); ) { Node n = iterNodes.next(); if (n.getCategoryID() == Node.COMPOSITE) ((CompositeNode) n).reload(g); } }
public Collection hasSourceCodeFiles(Collection sourceCodeFilesToCheck) { Vector v = new Vector(); for (Iterator en = sourceCodeFilesToCheck.iterator(); en.hasNext(); ) { IJavaSourceFile elt = (IJavaSourceFile) en.next(); v.addElement(new Boolean(hasSourceCodeFile(elt))); } return v; }
public static Element appendNode(Element self, Object name, Map attributes, String value) { Element result = appendNode(self, name, value); for (Iterator iterator = attributes.entrySet().iterator(); iterator.hasNext(); ) { Map.Entry e = (Map.Entry) iterator.next(); putAt(result, "@" + e.getKey().toString(), e.getValue()); } return result; }
public static List list(NodeList self) { List answer = new ArrayList(); Iterator it = DefaultGroovyMethods.iterator(self); while (it.hasNext()) { answer.add(it.next()); } return answer; }
public Collection hasRepositoryLocations(Collection repositoryLocationsToCheck) { Vector v = new Vector(); for (Iterator en = repositoryLocationsToCheck.iterator(); en.hasNext(); ) { IRepositoryLocation elt = (IRepositoryLocation) en.next(); v.addElement(new Boolean(hasRepositoryLocation(elt))); } return v; }
public boolean hasAllSourceCodeFiles(Collection sourceCodeFilesToCheck) { for (Iterator en = sourceCodeFilesToCheck.iterator(); en.hasNext(); ) { IJavaSourceFile elt = (IJavaSourceFile) en.next(); if (!hasSourceCodeFile(elt)) { return false; } } return true; }
public boolean hasAllRepositoryLocations(Collection repositoryLocationsToCheck) { for (Iterator en = repositoryLocationsToCheck.iterator(); en.hasNext(); ) { IRepositoryLocation elt = (IRepositoryLocation) en.next(); if (!hasRepositoryLocation(elt)) { return false; } } return true; }