/** Tests if the electron count matches the Hückel 4n+2 rule. */ private static boolean isHueckelValid(IAtomContainer singleRing) throws CDKException { int electronCount = 0; for (IAtom ringAtom : singleRing.atoms()) { if (ringAtom.getHybridization() != CDKConstants.UNSET && (ringAtom.getHybridization() == Hybridization.SP2) || ringAtom.getHybridization() == Hybridization.PLANAR3) { // for example, a carbon // note: the double bond is in the ring, that has been tested earlier // FIXME: this does assume bond orders to be resolved too, when detecting // sprouting double bonds if ("N.planar3".equals(ringAtom.getAtomTypeName())) { electronCount += 2; } else if ("N.minus.planar3".equals(ringAtom.getAtomTypeName())) { electronCount += 2; } else if ("N.amide".equals(ringAtom.getAtomTypeName())) { electronCount += 2; } else if ("S.2".equals(ringAtom.getAtomTypeName())) { electronCount += 2; } else if ("S.planar3".equals(ringAtom.getAtomTypeName())) { electronCount += 2; } else if ("C.minus.planar".equals(ringAtom.getAtomTypeName())) { electronCount += 2; } else if ("O.planar3".equals(ringAtom.getAtomTypeName())) { electronCount += 2; } else if ("N.sp2.3".equals(ringAtom.getAtomTypeName())) { electronCount += 1; } else { if (factory == null) { factory = AtomTypeFactory.getInstance( "org/openscience/cdk/dict/data/cdk-atom-types.owl", ringAtom.getBuilder()); } IAtomType type = factory.getAtomType(ringAtom.getAtomTypeName()); Object property = type.getProperty(CDKConstants.PI_BOND_COUNT); if (property != null && property instanceof Integer) { electronCount += ((Integer) property).intValue(); } } } else if (ringAtom.getHybridization() != null && ringAtom.getHybridization() == Hybridization.SP3 && getLonePairCount(ringAtom) > 0) { // for example, a nitrogen or oxygen electronCount += 2; } } return (electronCount % 4 == 2) && (electronCount > 2); }
/** * This method calculates the hybridization of an atom. * * @param atom The IAtom for which the DescriptorValue is requested * @param container Parameter is the atom container. * @return The hybridization */ @TestMethod(value = "testCalculate_IAtomContainer") public DescriptorValue calculate(IAtom atom, IAtomContainer container) { IAtomType atomType; try { atomType = CDKAtomTypeMatcher.getInstance(atom.getBuilder()).findMatchingAtomType(container, atom); } catch (CDKException e) { return new DescriptorValue( getSpecification(), getParameterNames(), getParameters(), new IntegerResult((int) Double.NaN), // does that work?? getDescriptorNames(), new CDKException("Atom type was null")); } if (atomType == null) { return new DescriptorValue( getSpecification(), getParameterNames(), getParameters(), new IntegerResult((int) Double.NaN), // does that work?? getDescriptorNames(), new CDKException("Atom type was null")); } if (atomType.getHybridization() == null) { return new DescriptorValue( getSpecification(), getParameterNames(), getParameters(), new IntegerResult((int) Double.NaN), // does that work?? getDescriptorNames(), new CDKException("Hybridization was null")); } int hybridizationCDK = atomType.getHybridization().ordinal(); return new DescriptorValue( getSpecification(), getParameterNames(), getParameters(), new IntegerResult(hybridizationCDK), getDescriptorNames()); }
public String perceiveSybylAtomTypes(IMolecule mol) throws InvocationTargetException { ICDKMolecule cdkmol; try { cdkmol = cdk.asCDKMolecule(mol); } catch (BioclipseException e) { System.out.println("Error converting cdk10 to cdk"); e.printStackTrace(); throw new InvocationTargetException(e); } IAtomContainer ac = cdkmol.getAtomContainer(); CDKAtomTypeMatcher cdkMatcher = CDKAtomTypeMatcher.getInstance(ac.getBuilder()); AtomTypeMapper mapper = AtomTypeMapper.getInstance( "org/openscience/cdk/dict/data/cdk-sybyl-mappings.owl" ); IAtomType[] sybylTypes = new IAtomType[ac.getAtomCount()]; int atomCounter = 0; int a=0; for (IAtom atom : ac.atoms()) { IAtomType type; try { type = cdkMatcher.findMatchingAtomType(ac, atom); } catch (CDKException e) { type = null; } if (type==null) { // logger.debug("AT null for atom: " + atom); type = atom.getBuilder().newAtomType(atom.getSymbol()); type.setAtomTypeName("X"); } AtomTypeManipulator.configure(atom, type); a++; } try { CDKHueckelAromaticityDetector.detectAromaticity(ac); // System.out.println("Arom: " // + CDKHueckelAromaticityDetector.detectAromaticity(ac) ); } catch (CDKException e) { logger.debug("Failed to perceive aromaticity: " + e.getMessage()); } for (IAtom atom : ac.atoms()) { String mappedType = mapper.mapAtomType(atom.getAtomTypeName()); if ("C.2".equals(mappedType) && atom.getFlag(CDKConstants.ISAROMATIC)) { mappedType = "C.ar"; } else if ("N.pl3".equals(mappedType) && atom.getFlag(CDKConstants.ISAROMATIC)) { mappedType = "N.ar"; } try { sybylTypes[atomCounter] = factory.getAtomType(mappedType); } catch (NoSuchAtomTypeException e) { // yes, setting null's here is important sybylTypes[atomCounter] = null; } atomCounter++; } StringBuffer result = new StringBuffer(); // now that full perception is finished, we can set atom type names: for (int i = 0; i < sybylTypes.length; i++) { if (sybylTypes[i] != null) { ac.getAtom(i).setAtomTypeName(sybylTypes[i].getAtomTypeName()); } else { ac.getAtom(i).setAtomTypeName("X"); } result.append(i).append(':').append(ac.getAtom(i).getAtomTypeName()) /*.append("\n")*/; } return result.toString(); }