Пример #1
0
  protected static void rotateXAxis(Mat rotation) {
    // get the matrix corresponding to the rotation vector
    Mat R = new Mat(3, 3, CvType.CV_64FC1);
    Calib3d.Rodrigues(rotation, R);

    // create the matrix to rotate 90º around the X axis
    // 1, 0, 0
    // 0 cos -sin
    // 0 sin cos
    double[] rot = {
      1, 0, 0,
      0, 0, -1,
      0, 1, 0
    };
    // multiply both matrix
    Mat res = new Mat(3, 3, CvType.CV_64FC1);
    double[] prod = new double[9];
    double[] a = new double[9];
    R.get(0, 0, a);
    for (int i = 0; i < 3; i++)
      for (int j = 0; j < 3; j++) {
        prod[3 * i + j] = 0;
        for (int k = 0; k < 3; k++) {
          prod[3 * i + j] += a[3 * i + k] * rot[3 * k + j];
        }
      }
    // convert the matrix to a vector with rodrigues back
    res.put(0, 0, prod);
    Calib3d.Rodrigues(res, rotation);
  }
Пример #2
0
  public static void draw3dAxis(
      Mat frame, CameraParameters cp, Scalar color, double height, Mat Rvec, Mat Tvec) {
    //		Mat objectPoints = new Mat(4,3,CvType.CV_32FC1);
    MatOfPoint3f objectPoints = new MatOfPoint3f();
    Vector<Point3> points = new Vector<Point3>();
    points.add(new Point3(0, 0, 0));
    points.add(new Point3(height, 0, 0));
    points.add(new Point3(0, height, 0));
    points.add(new Point3(0, 0, height));
    objectPoints.fromList(points);

    MatOfPoint2f imagePoints = new MatOfPoint2f();
    Calib3d.projectPoints(
        objectPoints, Rvec, Tvec, cp.getCameraMatrix(), cp.getDistCoeff(), imagePoints);
    List<Point> pts = new Vector<Point>();
    Converters.Mat_to_vector_Point(imagePoints, pts);

    Core.line(frame, pts.get(0), pts.get(1), color, 2);
    Core.line(frame, pts.get(0), pts.get(2), color, 2);
    Core.line(frame, pts.get(0), pts.get(3), color, 2);

    Core.putText(frame, "X", pts.get(1), Core.FONT_HERSHEY_SIMPLEX, 0.5, color, 2);
    Core.putText(frame, "Y", pts.get(2), Core.FONT_HERSHEY_SIMPLEX, 0.5, color, 2);
    Core.putText(frame, "Z", pts.get(3), Core.FONT_HERSHEY_SIMPLEX, 0.5, color, 2);
  }
Пример #3
0
  protected static void glGetModelViewMatrix(double[] modelview_matrix, Mat Rvec, Mat Tvec)
      throws ExtParamException {
    // check if parameters are valid
    boolean invalid = false;
    double[] tvec = new double[3];
    double[] rvec = new double[3];

    Rvec.get(0, 0, rvec);
    Tvec.get(0, 0, tvec);

    for (int i = 0; i < 3 && !invalid; i++) {
      if (tvec[i] != -999999) invalid |= false;
      if (rvec[i] != -999999) invalid |= false;
    }

    if (invalid)
      throw new ExtParamException("extrinsic parameters are not set Marker.getModelViewMatrix");
    Mat Rot = new Mat(3, 3, CvType.CV_32FC1);
    Mat Jacob = new Mat();
    Calib3d.Rodrigues(Rvec, Rot, Jacob); // TODO jacob no se vuelve a usar

    double[][] para = new double[3][4];
    double[] rotvec = new double[9];
    Rot.get(0, 0, rotvec);
    for (int i = 0; i < 3; i++) for (int j = 0; j < 3; j++) para[i][j] = rotvec[3 * i + j];
    // now, add the translation
    para[0][3] = tvec[0];
    para[1][3] = tvec[1];
    para[2][3] = tvec[2];
    double scale = 1;

    // R1C2
    modelview_matrix[0 + 0 * 4] = para[0][0];
    modelview_matrix[0 + 1 * 4] = para[0][1];
    modelview_matrix[0 + 2 * 4] = para[0][2];
    modelview_matrix[0 + 3 * 4] = para[0][3];
    // R2
    modelview_matrix[1 + 0 * 4] = para[1][0];
    modelview_matrix[1 + 1 * 4] = para[1][1];
    modelview_matrix[1 + 2 * 4] = para[1][2];
    modelview_matrix[1 + 3 * 4] = para[1][3];
    // R3
    modelview_matrix[2 + 0 * 4] = -para[2][0];
    modelview_matrix[2 + 1 * 4] = -para[2][1];
    modelview_matrix[2 + 2 * 4] = -para[2][2];
    modelview_matrix[2 + 3 * 4] = -para[2][3];

    modelview_matrix[3 + 0 * 4] = 0.0f;
    modelview_matrix[3 + 1 * 4] = 0.0f;
    modelview_matrix[3 + 2 * 4] = 0.0f;
    modelview_matrix[3 + 3 * 4] = 1.0f;
    if (scale != 0.0) {
      modelview_matrix[12] *= scale;
      modelview_matrix[13] *= scale;
      modelview_matrix[14] *= scale;
    }

    // rotate 90º around the x axis
    // rotating around x axis in OpenGL is equivalent to
    // multiply the model matrix by the matrix:
    // 1, 0, 0, 0, 0, cos(a), sin(a), 0, 0, -sin(a), cos(a), 0, 0, 0, 0, 1
    //	    double[] auxRotMat = new double[]{
    //	    	1, 0,  0, 0,
    //	    	0, 0, 1, 0,
    //	    	0, -1,  0, 0,
    //	    	0, 0,  0, 1
    //	    };
    //	    Utils.matrixProduct(modelview_matrix1, auxRotMat, modelview_matrix);
  }
  boolean decodeJPEGAndAnalyze(Context context, CalibrationEntries calibrationEntries) {
    boolean result = false;
    BitmapFactory.Options opt = new BitmapFactory.Options();
    opt.inPreferQualityOverSpeed = true;
    BitmapRegionDecoder brd;
    byte[] data = mData;
    try {
      brd = BitmapRegionDecoder.newInstance(data, 0, data.length, false);
      Rect rect;
      rect = new Rect(0, 0, brd.getWidth(), brd.getHeight());
      Bitmap bitmap = brd.decodeRegion(rect, opt);
      MatBitmapHolder mRgbaMatHolder = new MatBitmapHolder(bitmap);
      Mat rgbaMat = mRgbaMatHolder.pin();
      Mat grayData = new Mat();
      Imgproc.cvtColor(rgbaMat, grayData, Imgproc.COLOR_RGB2GRAY, 1);
      Mat centersCalibCircles = new Mat();

      Size patternSize = CalibrationEntries.Pattern_ASYMMETRIC_CIRCLES_GRID_SIZE;
      Size imageSize = new Size(grayData.cols(), grayData.rows());
      boolean patternWasFound =
          Calib3d.findCirclesGridDefault(
              grayData, patternSize, centersCalibCircles, Calib3d.CALIB_CB_ASYMMETRIC_GRID);

      if (patternWasFound && this.orientation != null) {
        int addedIdx = calibrationEntries.addEntry(this.orientation, centersCalibCircles);
        if (addedIdx >= 0) {
          Log.d(
              "CALIB",
              String.format(
                  "PictureCapture: Added calibration entry at %d tot: %d",
                  addedIdx, calibrationEntries.getNumEntries()));
          if (calibrationEntries.getNewlyAdded() > 5) {
            List<Mat> imagePoints = calibrationEntries.getPoints();
            List<Mat> objectPoints =
                calibrationEntries.getObjectPointsAsymmentricList(imagePoints.size());
            if (CalibrationEntries.isEnoughCalibrationPoints(imagePoints.size())) {
              calibrationEntries.resetNewlyAdded();
              CameraCalibrationData cameraCalibrationData = new CameraCalibrationData();
              List<Mat> rvecs = new Vector<Mat>(imagePoints.size());
              List<Mat> tvecs = new Vector<Mat>(imagePoints.size());
              int flags = 0;
              flags |= Calib3d.CALIB_FIX_K4 | Calib3d.CALIB_FIX_K5;
              Log.d("CALIB", String.format("PictureCapture: Calling Calib3d.calibrateCamera"));
              Mat K = new Mat();
              Mat kdist = new Mat();
              double rms =
                  Calib3d.calibrateCamera(
                      objectPoints, imagePoints, imageSize, K, kdist, rvecs, tvecs, flags);
              double[] Karray = new double[9];
              double[] distcoeffs_array = new double[5];
              K.get(0, 0, Karray);
              kdist.get(0, 0, distcoeffs_array);
              cameraCalibrationData.setData(
                  grayData.cols(), grayData.rows(), Karray, distcoeffs_array, rms);
              Log.d(
                  "CALIB",
                  String.format(
                      "PictureCapture: Calibration data: %s",
                      cameraCalibrationData.formatCalibrationDataString()));
              calibrationEntries.setCalibrationData(cameraCalibrationData);
              result = true;
            }
          }
        }
      }

      // mRightBitmap = brd.decodeRegion(rect, opt);
      rect = new Rect(brd.getWidth() - brd.getWidth() / 3, 0, brd.getWidth(), brd.getHeight());
      // mLeftBitmap = brd.decodeRegion(rect, opt);

      mRgbaMatHolder.unpin(rgbaMat);

    } catch (IOException e) {
      XLog.e("Region decoder doesn't want to cooperate", e);
    }

    return result;
  }
Пример #5
0
  /**
   * Analyze video frames using computer vision approach and generate a ArrayList<AttitudeRec>
   *
   * @param recs output ArrayList of AttitudeRec
   * @return total number of frame of the video
   */
  private int analyzeVideo(ArrayList<AttitudeRec> recs) {
    VideoMetaInfo meta = new VideoMetaInfo(new File(mPath, "videometa.json"));

    int decimation = 1;

    if (meta.fps > DECIMATION_FPS_TARGET) {
      decimation = (int) (meta.fps / DECIMATION_FPS_TARGET);
      meta.fps /= decimation;
    }

    VideoDecoderForOpenCV videoDecoder =
        new VideoDecoderForOpenCV(
            new File(mPath, "video.mp4"), decimation); // every 3 frame process 1 frame

    Mat frame;
    Mat gray = new Mat();
    int i = -1;

    Size frameSize = videoDecoder.getSize();

    if (frameSize.width != meta.frameWidth || frameSize.height != meta.frameHeight) {
      // this is very unlikely
      return -1;
    }

    if (TRACE_VIDEO_ANALYSIS) {
      Debug.startMethodTracing("cvprocess");
    }

    Size patternSize = new Size(4, 11);

    float fc = (float) (meta.frameWidth / 2.0 / Math.tan(meta.fovWidth / 2.0));
    Mat camMat = cameraMatrix(fc, new Size(frameSize.width / 2, frameSize.height / 2));
    MatOfDouble coeff = new MatOfDouble(); // dummy

    MatOfPoint2f centers = new MatOfPoint2f();
    MatOfPoint3f grid = asymmetricalCircleGrid(patternSize);
    Mat rvec = new MatOfFloat();
    Mat tvec = new MatOfFloat();

    MatOfPoint2f reprojCenters = new MatOfPoint2f();

    if (LOCAL_LOGV) {
      Log.v(TAG, "Camera Mat = \n" + camMat.dump());
    }

    long startTime = System.nanoTime();

    while ((frame = videoDecoder.getFrame()) != null) {
      if (LOCAL_LOGV) {
        Log.v(TAG, "got a frame " + i);
      }

      // has to be in front, as there are cases where execution
      // will skip the later part of this while
      i++;

      // convert to gray manually as by default findCirclesGridDefault uses COLOR_BGR2GRAY
      Imgproc.cvtColor(frame, gray, Imgproc.COLOR_RGB2GRAY);

      boolean foundPattern =
          Calib3d.findCirclesGridDefault(
              gray, patternSize, centers, Calib3d.CALIB_CB_ASYMMETRIC_GRID);

      if (!foundPattern) {
        // skip to next frame
        continue;
      }

      if (OUTPUT_DEBUG_IMAGE) {
        Calib3d.drawChessboardCorners(frame, patternSize, centers, true);
      }

      // figure out the extrinsic parameters using real ground truth 3D points and the pixel
      // position of blobs found in findCircleGrid, an estimated camera matrix and
      // no-distortion are assumed.
      boolean foundSolution =
          Calib3d.solvePnP(grid, centers, camMat, coeff, rvec, tvec, false, Calib3d.CV_ITERATIVE);

      if (!foundSolution) {
        // skip to next frame
        if (LOCAL_LOGV) {
          Log.v(TAG, "cannot find pnp solution in frame " + i + ", skipped.");
        }
        continue;
      }

      // reproject points to for evaluation of result accuracy of solvePnP
      Calib3d.projectPoints(grid, rvec, tvec, camMat, coeff, reprojCenters);

      // error is evaluated in norm2, which is real error in pixel distance / sqrt(2)
      double error = Core.norm(centers, reprojCenters, Core.NORM_L2);

      if (LOCAL_LOGV) {
        Log.v(TAG, "Found attitude, re-projection error = " + error);
      }

      // if error is reasonable, add it into the results
      if (error < REPROJECTION_THREASHOLD) {
        double[] rv = new double[3];
        rvec.get(0, 0, rv);
        recs.add(new AttitudeRec((double) i / meta.fps, rodr2rpy(rv)));
      }

      if (OUTPUT_DEBUG_IMAGE) {
        Calib3d.drawChessboardCorners(frame, patternSize, reprojCenters, true);
        Highgui.imwrite(
            Environment.getExternalStorageDirectory().getPath()
                + "/RVCVRecData/DebugCV/img"
                + i
                + ".png",
            frame);
      }
    }

    if (LOCAL_LOGV) {
      Log.v(TAG, "Finished decoding");
    }

    if (TRACE_VIDEO_ANALYSIS) {
      Debug.stopMethodTracing();
    }

    if (LOCAL_LOGV) {
      // time analysis
      double totalTime = (System.nanoTime() - startTime) / 1e9;
      Log.i(TAG, "Total time: " + totalTime + "s, Per frame time: " + totalTime / i);
    }
    return i;
  }
Пример #6
0
  private void detectObject() {

    readLock.lock();

    featureDetector.detect(img_scene, keypoints_scene);
    featureDetector.detect(img_object, keypoints_object);

    extractor.compute(img_object, keypoints_object, descriptors_object);
    extractor.compute(img_scene, keypoints_scene, descriptors_scene);

    readLock.unlock();

    if (!descriptors_scene.empty()) {
      matcher.match(descriptors_object, descriptors_scene, matches);

      // readLock.unlock();

      //
      listMatches = matches.toList();

      int size = descriptors_object.rows();

      // -- Quick calculation of max and min distances between keypoints
      for (int i = 0; i < size; i++) {
        double dist = listMatches.get(i).distance;
        if (dist < min_dist) {
          min_dist = dist;
        }
      }

      Log.e("Min", min_dist + "");

      threeMinDist = 3 * min_dist;

      listGoodMatches.removeAll(listGoodMatches);

      for (int i = 0; i < size; i++) {
        DMatch dMatch = listMatches.get(i);

        float distance = dMatch.distance;

        if (distance < threeMinDist) {
          listGoodMatches.add(dMatch);
        }
      }

      // good_matches.fromList(listGoodMatches);

      Log.e("Matches", listMatches.size() + "");
      Log.e("Good Matches", listGoodMatches.size() + "");
      //

      if (listGoodMatches.size() > 4) {
        Point pointObj[] = new Point[listGoodMatches.size()];
        Point pointScene[] = new Point[listGoodMatches.size()];

        listKeyPointObject = keypoints_object.toList();
        listKeyPointScene = keypoints_scene.toList();

        // listPointScene.removeAll(listPointScene);
        for (int i = 0; i < listGoodMatches.size(); i++) {
          // -- Get the keypoints from the good matches
          pointObj[i] = listKeyPointObject.get(listGoodMatches.get(i).queryIdx).pt;
          pointScene[i] = listKeyPointScene.get(listGoodMatches.get(i).trainIdx).pt;

          // listPointScene.add(listKeyPointScene.get(listGoodMatches.get(i).trainIdx).pt);
        }

        obj.fromArray(pointObj);
        scene.fromArray(pointScene);

        Log.e("Before findHomography", "");

        H = Calib3d.findHomography(obj, scene, Calib3d.RANSAC, 9);

        Log.e("AFTERRR findHomography", "");

        pointObjConners[0] = new Point(0, 0);
        pointObjConners[1] = new Point(img_object.cols(), 0);
        pointObjConners[2] = new Point(img_object.cols(), img_object.rows());
        pointObjConners[3] = new Point(0, img_object.rows());

        obj_corners.fromArray(pointObjConners);

        Core.perspectiveTransform(obj_corners, scene_corners, H);

        p0 = new Point(scene_corners.toList().get(0).x, scene_corners.toList().get(0).y + 0);
        p1 = new Point(scene_corners.toList().get(1).x, scene_corners.toList().get(1).y + 0);
        p2 = new Point(scene_corners.toList().get(2).x, scene_corners.toList().get(2).y + 0);
        p3 = new Point(scene_corners.toList().get(3).x, scene_corners.toList().get(3).y + 0);

        Log.e("POINT THREAD", p0.toString() + p1.toString() + p2.toString() + p3.toString());

        Log.e("detect ok", "detect ok");
      }

    } else {
      Log.e("No descritor", "No descritor");

      // readLock.unlock();
    }
  }