Пример #1
0
  @Override
  public void train(
      double[][] trainingSet,
      double[][] expectedResultSet,
      KObject origin,
      KInternalDataManager manager) {
    int maxOutput = ((MetaEnum) origin.metaClass().outputs()[0].type()).literals().length;
    KMemoryChunk ks =
        manager.preciseChunk(
            origin.universe(),
            origin.now(),
            origin.uuid(),
            origin.metaClass(),
            ((AbstractKObject) origin).previousResolved());
    int dependenciesIndex = origin.metaClass().dependencies().index();
    // Create initial chunk if empty
    int size = (maxOutput + 1) * (origin.metaClass().inputs().length * NUMOFFIELDS + 1);
    if (ks.getDoubleArraySize(dependenciesIndex, origin.metaClass()) == 0) {
      ks.extendDoubleArray(origin.metaClass().dependencies().index(), size, origin.metaClass());
      for (int i = 0; i < size; i++) {
        ks.setDoubleArrayElem(dependenciesIndex, i, 0, origin.metaClass());
      }
    }

    Array1D state =
        new Array1D(size, 0, origin.metaClass().dependencies().index(), ks, origin.metaClass());

    // update the state
    for (int i = 0; i < trainingSet.length; i++) {
      int output = (int) expectedResultSet[i][0];
      for (int j = 0; j < origin.metaClass().inputs().length; j++) {
        // If this is the first datapoint
        if (state.get(getCounter(output, origin.metaClass().dependencies())) == 0) {
          state.set(getIndex(j, output, MIN, origin.metaClass().dependencies()), trainingSet[i][j]);
          state.set(getIndex(j, output, MAX, origin.metaClass().dependencies()), trainingSet[i][j]);
          state.set(getIndex(j, output, SUM, origin.metaClass().dependencies()), trainingSet[i][j]);
          state.set(
              getIndex(j, output, SUMSQUARE, origin.metaClass().dependencies()),
              trainingSet[i][j] * trainingSet[i][j]);

        } else {
          if (trainingSet[i][j]
              < state.get(getIndex(j, output, MIN, origin.metaClass().dependencies()))) {
            state.set(
                getIndex(j, output, MIN, origin.metaClass().dependencies()), trainingSet[i][j]);
          }
          if (trainingSet[i][j]
              > state.get(getIndex(j, output, MAX, origin.metaClass().dependencies()))) {
            state.set(
                getIndex(j, output, MAX, origin.metaClass().dependencies()), trainingSet[i][j]);
          }
          state.add(getIndex(j, output, SUM, origin.metaClass().dependencies()), trainingSet[i][j]);
          state.add(
              getIndex(j, output, SUMSQUARE, origin.metaClass().dependencies()),
              trainingSet[i][j] * trainingSet[i][j]);
        }

        // update global stat
        if (state.get(getCounter(maxOutput, origin.metaClass().dependencies())) == 0) {
          state.set(
              getIndex(j, maxOutput, MIN, origin.metaClass().dependencies()), trainingSet[i][j]);
          state.set(
              getIndex(j, maxOutput, MAX, origin.metaClass().dependencies()), trainingSet[i][j]);
          state.set(
              getIndex(j, maxOutput, SUM, origin.metaClass().dependencies()), trainingSet[i][j]);
          state.set(
              getIndex(j, maxOutput, SUMSQUARE, origin.metaClass().dependencies()),
              trainingSet[i][j] * trainingSet[i][j]);
        } else {
          if (trainingSet[i][j]
              < state.get(getIndex(j, maxOutput, MIN, origin.metaClass().dependencies()))) {
            state.set(
                getIndex(j, maxOutput, MIN, origin.metaClass().dependencies()), trainingSet[i][j]);
          }
          if (trainingSet[i][j]
              > state.get(getIndex(j, maxOutput, MAX, origin.metaClass().dependencies()))) {
            state.set(
                getIndex(j, maxOutput, MAX, origin.metaClass().dependencies()), trainingSet[i][j]);
          }
          state.add(
              getIndex(j, maxOutput, SUM, origin.metaClass().dependencies()), trainingSet[i][j]);
          state.add(
              getIndex(j, maxOutput, SUMSQUARE, origin.metaClass().dependencies()),
              trainingSet[i][j] * trainingSet[i][j]);
        }
      }

      // Update Global counters
      state.add(getCounter(output, origin.metaClass().dependencies()), 1);
      state.add(getCounter(maxOutput, origin.metaClass().dependencies()), 1);
    }
  }
Пример #2
0
  public static void main(String[] args) {

    KMetaModel metaModel = new MetaModel("SmartCityMetaModel");
    KMetaClass metaClassCity = metaModel.addMetaClass("City");
    KMetaClass metaClassDistrict = metaModel.addMetaClass("District");

    metaClassCity.addAttribute("name", KPrimitiveTypes.STRING);

    metaClassDistrict.addAttribute("name", KPrimitiveTypes.STRING);
    metaClassDistrict.addAttribute("nbcitizen", KPrimitiveTypes.LONG);

    // create the reference districts from City to district with multiplicity 0..*
    metaClassCity.addRelation("districts", metaClassDistrict, null);

    KModel model =
        metaModel.createModel(
            DataManagerBuilder.create().withScheduler(new DirectScheduler()).build());
    model.connect(
        o -> {

          // Create reflexively a model object using the metaClass name
          KObject city = model.createByName("City", BASE_UNIVERSE, BASE_TIME);
          city.setByName("name", "MySmartCity");

          // Create reflexively a model object using the metaClass
          KObject district_1 = model.create(metaClassDistrict, BASE_UNIVERSE, BASE_TIME);
          district_1.setByName("name", "District_1");
          district_1.setByName("nbcitizen", 10000);

          // Create reflexively a model object using the metaClass
          KObject district_2 = model.createByName("District", BASE_UNIVERSE, BASE_TIME);
          district_2.setByName("name", "District_2");
          district_2.setByName("nbcitizen", 50000);

          // Add the two district to the City
          city.addByName("districts", district_1);
          city.addByName("districts", district_2);

          // Save the full model as JSON in the console
          model.universe(BASE_UNIVERSE).time(BASE_TIME).json().save(city, System.out::println);

          // Visiting all reachable objects from the city
          city.visit(
              elem -> {
                System.out.println("Visiting..." + elem.toJSON());
                return KVisitResult.CONTINUE;
              },
              o1 -> System.out.println("End of the visit"));

          // Visiting all attributes of an object
          city.visitAttributes(
              (metaAttribute, value) -> {
                System.out.println(
                    "City attribute "
                        + metaAttribute.metaName()
                        + ", type="
                        + metaAttribute.attributeTypeId()
                        + "="
                        + value);
              });

          // Finally any object have a UUID and can be retrieve from it
          long cityUUID = city.uuid();
          System.out.println("City uuid=" + cityUUID);
          model.lookup(
              BASE_UNIVERSE,
              BASE_TIME,
              cityUUID,
              new KCallback<KObject>() {
                @Override
                public void on(KObject resolvedObject) {
                  System.out.println("Resolved=" + resolvedObject.toJSON());
                }
              });
        });
  }
Пример #3
0
  @Override
  public double[][] infer(double[][] features, KObject origin, KInternalDataManager manager) {
    int maxOutput = ((MetaEnum) origin.metaClass().outputs()[0].type()).literals().length;
    KMemoryChunk ks =
        manager.closestChunk(
            origin.universe(),
            origin.now(),
            origin.uuid(),
            origin.metaClass(),
            ((AbstractKObject) origin).previousResolved());
    int dependenciesIndex = origin.metaClass().dependencies().index();
    // check if chunk is empty
    int size = (maxOutput + 1) * (origin.metaClass().inputs().length * NUMOFFIELDS + 1);
    if (ks.getDoubleArraySize(dependenciesIndex, origin.metaClass()) == 0) {
      return null;
    }
    Array1D state =
        new Array1D(size, 0, origin.metaClass().dependencies().index(), ks, origin.metaClass());
    double[][] result = new double[features.length][1];

    for (int j = 0; j < features.length; j++) {
      result[j] = new double[1];
      double maxprob = 0;
      double prob = 0;
      for (int output = 0; output < maxOutput; output++) {
        prob = getProba(features[j], output, state, origin.metaClass().dependencies());
        if (prob > maxprob) {
          maxprob = prob;
          result[j][0] = output;
        }
      }
    }
    return result;
  }