private void initLearningMetrics() { if (learningMetricsInitialized) { return; } double defaultWeight = SystemDao.getDefaultWeight(); double lastWeekLift = getDemandUplift(SystemDao.getReviewCycleStartDate()); Sales beginOfRunCycleSales = getSales(SystemDao.getReviewCycleStartDate()); double beginOfRunCycleRcAvgSales = 0; if (beginOfRunCycleSales != null) { beginOfRunCycleRcAvgSales = beginOfRunCycleSales.getRcAvgSales(); } rcAvgSales = getWeightedWeight1(learningWeekCounter, defaultWeight) * epSales / lastWeekLift + (1 - getWeightedWeight1(learningWeekCounter, defaultWeight)) * beginOfRunCycleRcAvgSales; // Tim's documentation states: // Its important sales metrics are initialized to AVG_WEEKLY_SALES based on the initialization // logic. // This estimates initial values based on different combinations of the PLs product and location // hierarchies dependent on the specific situation for that PL rcAvgSalesActual = rcAvgSales; rcAvgDemand = rcAvgSales; rcOldAvgDemand = rcAvgSales; rcAvgDemandActual = rcAvgSales; epAvgInv = rcAvgSales; rcWass2 = Math.pow(rcAvgSales, 2); learningMetricsInitialized = true; }
private String salesToString() { StringBuffer epSalesActualBf = new StringBuffer(); epSalesActualBf.append("epSalesActual|"); StringBuffer epSalesBf = new StringBuffer(); epSalesBf.append("epSales|"); StringBuffer rcSalesBf = new StringBuffer(); rcSalesBf.append("rcSales|"); StringBuffer rcAvgSalesBf = new StringBuffer(); rcAvgSalesBf.append("rcAvgSales|"); StringBuffer rcSalesActualBf = new StringBuffer(); rcSalesActualBf.append("rcSalesActual|"); StringBuffer rcAvgSalesActualBf = new StringBuffer(); rcAvgSalesActualBf.append("rcAvgSalesActual|"); Iterator<Years> yrItr = salesMap.keySet().iterator(); Map<LocalDate, Sales> currSalesMap; LocalDate currDate; Years currYr; Sales currSale; // Populate Sale buffers while (yrItr.hasNext()) { currYr = yrItr.next(); currSalesMap = salesMap.get(currYr); Iterator<LocalDate> itr = currSalesMap.keySet().iterator(); while (itr.hasNext()) { currDate = itr.next(); currSale = currSalesMap.get(currDate); // epSaleActual epSalesActualBf.append(currDate); epSalesActualBf.append(":"); epSalesActualBf.append(currSale.getEpSalesActual()); epSalesActualBf.append("|"); // epSale epSalesBf.append(currDate); epSalesBf.append(":"); epSalesBf.append(currSale.getEpSales()); epSalesBf.append("|"); // rc sales actual rcSalesActualBf.append(currDate); rcSalesActualBf.append(":"); rcSalesActualBf.append(currSale.getRcSalesActual()); rcSalesActualBf.append("|"); // rc average sales actual rcAvgSalesActualBf.append(currDate); rcAvgSalesActualBf.append(":"); rcAvgSalesActualBf.append(currSale.getRcAvgSalesActual()); rcAvgSalesActualBf.append("|"); // rc sales rcSalesBf.append(currDate); rcSalesBf.append(":"); rcSalesBf.append(currSale.getRcSales()); rcSalesBf.append("|"); // rc sales average rcAvgSalesBf.append(currDate); rcAvgSalesBf.append(":"); rcAvgSalesBf.append(currSale.getRcAvgSales()); rcAvgSalesBf.append("|"); } } epSalesActualBf.append(";\n"); epSalesBf.append(";\n"); rcSalesActualBf.append(";\n"); rcAvgSalesActualBf.append(";\n"); rcSalesBf.append(";\n"); rcAvgSalesBf.append(";\n"); StringBuffer retBf = new StringBuffer(); retBf.append(epSalesActualBf.toString()); retBf.append(epSalesBf.toString()); retBf.append(rcSalesActualBf.toString()); retBf.append(rcAvgSalesActualBf.toString()); retBf.append(rcSalesBf.toString()); retBf.append(rcAvgSalesBf.toString()); retBf.append("\n"); return retBf.toString(); }
private void processWeeklyMetrics() { // On the end of the review cycle (Sat night) the rcAvgDemand does not undergo weekly learning // For this exercise we do not have time granulity so weekly processing is done Sunday for the // prior week LocalDate crc = SystemDao.getCrc(); LocalDate prevCRCStartDate = SystemDao.getReviewCycleStartDate(); // getPreviousCRCStartDate(); Sales salesData = getSales(crc); Sales beginOfPeriodSalesData = getSales(prevCRCStartDate); double beginOfPeriodRcAvgSales = 0; double beginOfPeriodRcActualAvgSales = 0; if (beginOfPeriodSalesData != null) { beginOfPeriodRcAvgSales = beginOfPeriodSalesData.getRcAvgSales(); beginOfPeriodRcActualAvgSales = beginOfPeriodSalesData.getRcAvgSalesActual(); } Demand demandData = getDemand(crc); Demand beginOfPeriodDemandData = getDemand(prevCRCStartDate); double beginOfPeriodRcAvgDemand = 0; double beginOfPeriodRcAvgActualDemand = 0; if (beginOfPeriodDemandData != null) { beginOfPeriodRcAvgDemand = beginOfPeriodDemandData.getRcAvgDemand(); beginOfPeriodRcAvgActualDemand = beginOfPeriodDemandData.getRcAvgDemandActual(); } double defaultWeight = SystemDao.getDefaultWeight(); double lastWeekLift = getDemandUplift(prevCRCStartDate); double weight = 1.0; if (statusCd == STATUS_CD.LEARNING) { weight = getWeightedWeight1(learningWeekCounter, defaultWeight); } else if (statusCd == STATUS_CD.ACTIVE) { weight = getWeight1(learningWeekCounter); } rcAvgSalesActual = (weight * (salesData.getRcSalesActual() / lastWeekLift)) + ((1 - weight) * beginOfPeriodRcActualAvgSales); rcAvgSales = (weight * (salesData.getRcSales() / lastWeekLift)) + ((1 - weight) * beginOfPeriodRcAvgSales); rcAvgDemand = (weight * (demandData.getRcDemand() / lastWeekLift)) + ((1 - weight) * beginOfPeriodRcAvgDemand); rcAvgDemandActual = (weight * (demandData.getRcDemandActual() / lastWeekLift)) + ((1 - weight) * beginOfPeriodRcAvgActualDemand); // error checking if (rcAvgDemand == 0 && statusCd != STATUS_CD.INACTIVE) { System.out.println("Error: 0 demand when product status is not inactive"); } if (rcAvgDemand >= 4 * rcAvgSales) { rcAvgSales = 4 * rcAvgSalesActual; System.out.println("Error: RC Actual Sales greater then 4 times RC Average Sales"); } if (rcAvgDemand >= 3 * rcAvgSalesActual) { rcAvgSales = 3 * rcAvgSalesActual; System.out.println("Error: RC Actual Sales greater then 3 times RC Actual Average Sales"); } storeWeeklyMetrics(crc); this.learningWeekCounter++; // this is the end of the review cycle reset hasBeenOffRange if (hasBeenOffRange) { hasBeenOffRange = false; } resetRcAccumulators(); }