/** * Removes receiver and sender feedback from RTCP packets. * * @param inPacket the <tt>RTCPCompoundPacket</tt> to filter. * @return the filtered <tt>RawPacket</tt>. */ public RawPacket gateway(RTCPCompoundPacket inPacket) { if (inPacket == null || inPacket.packets == null || inPacket.packets.length == 0) { logger.info("Ignoring empty RTCP packet."); return null; } ArrayList<RTCPPacket> outPackets = new ArrayList<RTCPPacket>(inPacket.packets.length); for (RTCPPacket p : inPacket.packets) { switch (p.type) { case RTCPPacket.RR: case RTCPPacket.SR: case RTCPPacket.SDES: // We generate our own RR/SR/SDES packets. We only want // to forward NACKs/PLIs/etc. break; case RTCPFBPacket.PSFB: RTCPFBPacket psfb = (RTCPFBPacket) p; switch (psfb.fmt) { case RTCPREMBPacket.FMT: // We generate its own REMB packets. break; default: // We let through everything else, like NACK // packets. outPackets.add(psfb); break; } break; default: // We let through everything else, like BYE and APP // packets. outPackets.add(p); break; } } if (outPackets.size() == 0) { return null; } // We have feedback messages to send. Pack them in a compound // RR and send them. TODO Use RFC5506 Reduced-Size RTCP, if the // receiver supports it. Collection<RTCPRRPacket> rrPackets = makeRTCPRRPackets(System.currentTimeMillis()); if (rrPackets != null && rrPackets.size() != 0) { outPackets.addAll(0, rrPackets); } else { logger.warn("We might be sending invalid RTCPs."); } RTCPPacket[] pkts = outPackets.toArray(new RTCPPacket[outPackets.size()]); RTCPCompoundPacket outPacket = new RTCPCompoundPacket(pkts); return generator.apply(outPacket); }
/** * Makes <tt>RTCPRRPacket</tt>s using information in FMJ. * * @param time * @return A <tt>Collection</tt> of <tt>RTCPRRPacket</tt>s to inject to the <tt>MediaStream</tt>. */ private Collection<RTCPRRPacket> makeRTCPRRPackets(long time) { RTCPReportBlock[] reportBlocks = makeRTCPReportBlocks(time); if (reportBlocks == null || reportBlocks.length == 0) { return null; } Collection<RTCPRRPacket> rrPackets = new ArrayList<RTCPRRPacket>(); // We use the stream's local source ID (SSRC) as the SSRC of packet // sender. long streamSSRC = getLocalSSRC(); // Since a maximum of 31 reception report blocks will fit in an SR // or RR packet, additional RR packets SHOULD be stacked after the // initial SR or RR packet as needed to contain the reception // reports for all sources heard during the interval since the last // report. if (reportBlocks.length > MAX_RTCP_REPORT_BLOCKS) { for (int offset = 0; offset < reportBlocks.length; offset += MAX_RTCP_REPORT_BLOCKS) { RTCPReportBlock[] blocks = (reportBlocks.length - offset < MAX_RTCP_REPORT_BLOCKS) ? new RTCPReportBlock[reportBlocks.length - offset] : MAX_RTCP_REPORT_BLOCKS_ARRAY; System.arraycopy(reportBlocks, offset, blocks, 0, blocks.length); RTCPRRPacket rr = new RTCPRRPacket((int) streamSSRC, blocks); rrPackets.add(rr); } } else { RTCPRRPacket rr = new RTCPRRPacket((int) streamSSRC, reportBlocks); rrPackets.add(rr); } return rrPackets; }
/** * Ctor. * * @param ssrc * @param remoteTime * @param rtpTimestamp * @param frequencyHz */ ReceivedRemoteClock(int ssrc, long remoteTime, int rtpTimestamp, int frequencyHz) { this.ssrc = ssrc; this.remoteClock = new RemoteClock(remoteTime, rtpTimestamp); this.frequencyHz = frequencyHz; this.receivedTime = System.currentTimeMillis(); }
/** {@inheritDoc} */ @Override public RawPacket report() { garbageCollector.cleanup(); // TODO Compound RTCP packets should not exceed the MTU of the network // path. // // An individual RTP participant should send only one compound RTCP // packet per report interval in order for the RTCP bandwidth per // participant to be estimated correctly, except when the compound // RTCP packet is split for partial encryption. // // If there are too many sources to fit all the necessary RR packets // into one compound RTCP packet without exceeding the maximum // transmission unit (MTU) of the network path, then only the subset // that will fit into one MTU should be included in each interval. The // subsets should be selected round-robin across multiple intervals so // that all sources are reported. // // It is impossible to know in advance what the MTU of path will be. // There are various algorithms for experimenting to find out, but many // devices do not properly implement (or deliberately ignore) the // necessary standards so it all comes down to trial and error. For that // reason, we can just guess 1200 or 1500 bytes per message. long time = System.currentTimeMillis(); Collection<RTCPPacket> packets = new ArrayList<RTCPPacket>(); // First, we build the RRs. Collection<RTCPRRPacket> rrPackets = makeRTCPRRPackets(time); if (rrPackets != null && rrPackets.size() != 0) { packets.addAll(rrPackets); } // Next, we build the SRs. Collection<RTCPSRPacket> srPackets = makeRTCPSRPackets(time); if (srPackets != null && srPackets.size() != 0) { packets.addAll(srPackets); } // Bail out if we have nothing to report. if (packets.size() == 0) { return null; } // Next, we build the REMB. RTCPREMBPacket rembPacket = makeRTCPREMBPacket(); if (rembPacket != null) { packets.add(rembPacket); } // Finally, we add an SDES packet. RTCPSDESPacket sdesPacket = makeSDESPacket(); if (sdesPacket != null) { packets.add(sdesPacket); } // Prepare the <tt>RTCPCompoundPacket</tt> to return. RTCPPacket rtcpPackets[] = packets.toArray(new RTCPPacket[packets.size()]); RTCPCompoundPacket cp = new RTCPCompoundPacket(rtcpPackets); // Build the <tt>RTCPCompoundPacket</tt> and return the // <tt>RawPacket</tt> to inject to the <tt>MediaStream</tt>. return generator.apply(cp); }