/** @return the largest connected component of the graph. */
  public ArrayList<Cell> getLargestConnectedComponent() {
    ArrayList<ArrayList<Cell>> components = new ArrayList<>();
    boolean visited[][] = new boolean[rowCount][colCount];
    for (int row = 0; row < rowCount; ++row)
      for (int col = 0; col < colCount; ++col) visited[row][col] = false;

    Queue<Cell> q;
    Cell t = null, u = null;
    for (Cell c : g.vertexSet()) {
      if (!visited[c.getRow()][c.getCol()]) {
        q = new LinkedList<Cell>();
        ArrayList<Cell> component = new ArrayList<>();
        visited[c.getRow()][c.getCol()] = true;

        // Find all connected nodes
        q.add(c);
        component.add(c);
        while (!q.isEmpty()) {
          t = q.remove();
          for (WeightedEdge e : g.edgesOf(t)) {
            u = t.equals(g.getEdgeSource(e)) ? g.getEdgeTarget(e) : g.getEdgeSource(e);
            if (!visited[u.getRow()][u.getCol()]) {
              visited[u.getRow()][u.getCol()] = true;
              q.add(u);
              component.add(u);
            }
          }
        }

        components.add(component);
      }
    }

    int largestSize = 0, largestIndex = 0;
    for (int i = 0; i < components.size(); ++i) {
      if (components.get(i).size() > largestSize) {
        largestSize = components.get(i).size();
        largestIndex = i;
      }
    }

    filterGraph(components.get(largestIndex));
    return components.get(largestIndex);
  }
Пример #2
0
 public Queue<Vector2> getPathToPoint(Vector2 origin, Vector2 destination) {
   LinkedList<Vector2> steps = new LinkedList<Vector2>();
   Vector2 originRounded = getClosestNode(Math.round(origin.x), Math.round(origin.y));
   Vector2 destinationRounded =
       getClosestNode(Math.round(destination.x), Math.round(destination.y));
   try {
     List<DefaultWeightedEdge> list =
         DijkstraShortestPath.findPathBetween(movementGraph, originRounded, destinationRounded);
     for (DefaultWeightedEdge edge : list) steps.add(movementGraph.getEdgeSource(edge));
     steps.add(movementGraph.getEdgeTarget(list.get(list.size() - 1)));
   } catch (Exception e) {
     logger.warning(
         "Error pathfinding for origin="
             + originRounded
             + " destination="
             + destinationRounded
             + " with message: "
             + e.getMessage());
   }
   return steps;
 }
Пример #3
0
  /**
   * Links all the spots in the selection, in time-forward order.
   *
   * @param model the model to modify.
   * @param selectionModel the selection that contains the spots to link.
   */
  public static void linkSpots(final Model model, final SelectionModel selectionModel) {

    /*
     * Configure tracker
     */

    final TrackableObjectCollection<Spot> spots =
        new DefaultTOCollection<Spot>(selectionModel.getSpotSelection());
    final Map<String, Object> settings = new HashMap<String, Object>(1);
    settings.put(KEY_LINKING_MAX_DISTANCE, Double.POSITIVE_INFINITY);
    final NearestNeighborTracker<Spot> tracker = new NearestNeighborTracker<Spot>(spots, settings);
    tracker.setNumThreads(1);

    /*
     * Execute tracking
     */

    if (!tracker.checkInput() || !tracker.process()) {
      System.err.println("Problem while computing spot links: " + tracker.getErrorMessage());
      return;
    }
    final SimpleWeightedGraph<Spot, DefaultWeightedEdge> graph = tracker.getResult();

    /*
     * Copy found links in source model
     */

    model.beginUpdate();
    try {
      for (final DefaultWeightedEdge edge : graph.edgeSet()) {
        final Spot source = graph.getEdgeSource(edge);
        final Spot target = graph.getEdgeTarget(edge);
        model.addEdge(source, target, graph.getEdgeWeight(edge));
      }
    } finally {
      model.endUpdate();
    }
  }
Пример #4
0
 private void createGraphVisible() {
   if (graphVisibleBodies == null) graphVisibleBodies = new ArrayList<Body>();
   for (int i = 0; i < graphVisibleBodies.size(); i++)
     world.destroyBody(graphVisibleBodies.get(i));
   graphVisibleBodies.clear();
   if (nodesVisible)
     for (Vector2 node : movementGraph.vertexSet())
       PhysicsHelper.createCircle(world, BodyType.StaticBody, .1f, 1, FactionType.NEUTRAL)
           .setTransform(node, 0);
   if (edgesVisible)
     for (DefaultWeightedEdge edge : movementGraph.edgeSet()) {
       Vector2 source = movementGraph.getEdgeSource(edge),
           target = movementGraph.getEdgeTarget(edge);
       PhysicsHelper.createEdge(
           world,
           BodyType.StaticBody,
           source.x,
           source.y,
           target.x,
           target.y,
           1,
           FactionType.NEUTRAL);
     }
 }
  /**
   * Simulate next step for the given particle.
   *
   * @param nextPts
   * @param particleNum
   */
  public void simulateForwardStep(ArrayList<Point> nextPts, Particle thisParticle) {
    HashMap<Vertex, Point> thisObservedPosMap = new HashMap<Vertex, Point>();
    HashMap<Vertex, AntPath> thisAntPathMap = new HashMap<Vertex, AntPath>();

    thisParticle.currentFalsePositives = new ArrayList<Point>();
    for (Point pt : nextPts) {
      Vertex vx = new ObsVertex();
      thisObservedPosMap.put(vx, pt);
    }

    for (AntPath ap : thisParticle.getPaths()) {
      Vertex vx = new PathVertex();
      thisAntPathMap.put(vx, ap);
    }

    /*
     * Compute probability graph for this particle.
     */
    SimpleWeightedGraph<Vertex, DefaultWeightedComparableEdge> probabilityGraph =
        new SimpleWeightedGraph<Vertex, DefaultWeightedComparableEdge>(
            DefaultWeightedComparableEdge.class);
    ValueSortedMap<DefaultWeightedComparableEdge, Double> edgeMap =
        new ValueSortedMap<DefaultWeightedComparableEdge, Double>(true);
    computeLogProbabilityGraph(probabilityGraph, edgeMap, thisObservedPosMap, thisAntPathMap);

    //		displayLogProbabilityGraph(probabilityGraph,thisObservedPosMap,thisAntPathMap,vertexSums);

    /*
     * Generate new ant locations based on probability graph.  We do this by sampling the most likely event,
     * removing this event from the probability graph, updating the prob. graph, then repeating until all
     * observations/causes are accounted for.
     *
     * To do this (relatively) efficiently, we maintain a sorted hash-map of possible observation/cause pairs.
     * To avoid having to rescale the entire hash-map every step, we maintain the current sum of weights.
     *
     * We're also keeping track of the posterior log-probability of the simulated step.
     */

    double logprob = 0;
    int nfp = 0;
    int nfn = 0;

    int doOutput = 0;
    while (edgeMap.size() > 0) {

      /*
       * Sample an event from the probability graph.
       */

      DefaultWeightedComparableEdge event = sampleEdge(probabilityGraph, edgeMap);

      edgeMap.remove(event);
      double edgeWeight = probabilityGraph.getEdgeWeight(event);
      double thisLogProb = edgeWeight;
      logprob = logprob + thisLogProb;

      Vertex v1 = probabilityGraph.getEdgeSource(event);
      Vertex v2 = probabilityGraph.getEdgeTarget(event);

      if (doOutput > 0) {
        System.err.println("edgeWeight: " + edgeWeight);
        doOutput = outputInterestingStuff(v1, v2, probabilityGraph);
      }

      if (v1.getClass().equals(ObsVertex.class)) {
        assert (v2.getClass().equals(PathVertex.class));
        Vertex tv = v1;
        v1 = v2;
        v2 = tv;
      }

      /*
       * Update the probability graph.
       */
      if (!v1.equals(falsePositive)) {
        Set<DefaultWeightedComparableEdge> es = probabilityGraph.edgesOf(v1);
        for (DefaultWeightedComparableEdge ed : es) edgeMap.remove(ed);
        boolean tt = probabilityGraph.removeVertex(v1);
        assert (tt);
      } else {
        nfp += 1;
        thisParticle.currentFalsePositives.add(thisObservedPosMap.get(v2));
      }

      if (!v2.equals(falseNegative)) {
        Set<DefaultWeightedComparableEdge> es = probabilityGraph.edgesOf(v2);
        for (DefaultWeightedComparableEdge ed : es) edgeMap.remove(ed);
        boolean tt = probabilityGraph.removeVertex(v2);
        assert (tt);
      } else nfn += 1;

      // Utils.computeVertexSums(probabilityGraph,vertexSums);

      /*
       * Update AntPath trajectory.
       */

      if (!v1.equals(falsePositive)) {
        AntPath ap = thisAntPathMap.get(v1);
        assert (ap != null);
        Point obs = thisObservedPosMap.get(v2);

        Point newPos = new Point();
        double thislp = sampleConditionalPos(ap, obs, newPos) + thisLogProb;
        ap.updatePosition(newPos, obs, thislp);
      }

      /*
       * Compute likelihoods.
       */
    }
  }
Пример #6
0
  public EdgeBetweennessGraph(WeightedMultigraph<String, DefaultWeightedEdge> originalGraph) {
    super(DefaultWeightedEdge.class); // Constructor inherented from parent class

    // 1. Initialize the edge betweenness digraph
    // 1.1. Add vertices
    for (String thisVertex : originalGraph.vertexSet()) this.addVertex(thisVertex);
    // 1.2. Add edges
    for (DefaultWeightedEdge thisEdge : originalGraph.edgeSet()) {
      DefaultWeightedEdge newEdge = new DefaultWeightedEdge();
      String sendingName = originalGraph.getEdgeSource(thisEdge);
      String receivingName = originalGraph.getEdgeTarget(thisEdge);
      this.addEdge(sendingName, receivingName, newEdge);
      this.setEdgeWeight(newEdge, 0.0);
    }
    // 1.3. Create corresponding unweighted graph
    // 1.3.1. Add vertices
    WeightedMultigraph<String, DefaultWeightedEdge> originalUnweightedGraph =
        new WeightedMultigraph<String, DefaultWeightedEdge>(DefaultWeightedEdge.class);
    for (String thisVertex : originalGraph.vertexSet())
      originalUnweightedGraph.addVertex(thisVertex);
    // 1.3.2. Add edges
    for (DefaultWeightedEdge thisEdge : originalGraph.edgeSet()) {
      DefaultWeightedEdge newEdge = new DefaultWeightedEdge();
      String sendingName = originalGraph.getEdgeSource(thisEdge);
      String receivingName = originalGraph.getEdgeTarget(thisEdge);
      originalUnweightedGraph.addEdge(sendingName, receivingName, newEdge);
      originalUnweightedGraph.setEdgeWeight(newEdge, 1.0);
    }

    for (String thisVertex : this.vertexSet()) {
      // 2. Create shortest-path graph for every vertex by Dijkstra algorithm
      Multigraph<String, DefaultEdge> shortestPathDigraph =
          DijkstraAlgorithm(originalUnweightedGraph, thisVertex);

      // 3. Calculate the contribution of current vertex's shortest-path graph to final edge
      // betweenness (Newman algorithm)
      SimpleWeightedGraph<String, DefaultWeightedEdge> edgeBetweennessDigraph =
          NewmanAlgorithm(shortestPathDigraph, thisVertex);

      // 4. Update final edge betweenness digraph with current vertex's shortest-path graph
      if (edgeBetweennessDigraph != null)
        for (DefaultWeightedEdge thisEdge : edgeBetweennessDigraph.edgeSet()) {
          String sourceVertex = edgeBetweennessDigraph.getEdgeSource(thisEdge);
          String targetVertex = edgeBetweennessDigraph.getEdgeTarget(thisEdge);
          double betweennessWeight = edgeBetweennessDigraph.getEdgeWeight(thisEdge);
          DefaultWeightedEdge edgeInWholeGraph = this.getEdge(sourceVertex, targetVertex);
          double newWeight = this.getEdgeWeight(edgeInWholeGraph) + betweennessWeight;
          this.setEdgeWeight(edgeInWholeGraph, newWeight);
        }
    }

    // 5. Revise the edge betweenness digraph with the original active power digraph
    for (DefaultWeightedEdge thisEdge : this.edgeSet()) {
      String sourceVertex = this.getEdgeSource(thisEdge);
      String targetVertex = this.getEdgeTarget(thisEdge);
      double betweennessWeight = this.getEdgeWeight(thisEdge);
      DefaultWeightedEdge edgeInWholeGraph = originalGraph.getEdge(sourceVertex, targetVertex);
      double newWeight = betweennessWeight / originalGraph.getEdgeWeight(edgeInWholeGraph);
      this.setEdgeWeight(thisEdge, newWeight);
      //			System.out.println("Final edge betweenness between " + sourceVertex + " and " +
      // targetVertex + ": " + newWeight);
    }
  }
Пример #7
0
  // Create shortest-path graph for every vertex by depth-first traversal algorithm
  private Multigraph<String, DefaultEdge> DijkstraAlgorithm(
      WeightedMultigraph<String, DefaultWeightedEdge> originalGraph, String thisVertex) {

    // 1. Simplify the multi-graph of the active power flow into a simple graph
    SimpleWeightedGraph<String, DefaultWeightedEdge> originalSimpleGraph =
        new SimpleWeightedGraph<String, DefaultWeightedEdge>(DefaultWeightedEdge.class);
    for (String curVertex : originalGraph.vertexSet()) originalSimpleGraph.addVertex(curVertex);
    for (DefaultWeightedEdge curEdge : originalGraph.edgeSet()) {
      String sourceVertex = originalGraph.getEdgeSource(curEdge);
      String targetVertex = originalGraph.getEdgeTarget(curEdge);
      if (originalSimpleGraph.containsEdge(sourceVertex, targetVertex)) {
        DefaultWeightedEdge modifiedEdge = originalSimpleGraph.getEdge(sourceVertex, targetVertex);
        double newEdgeWeight =
            originalSimpleGraph.getEdgeWeight(modifiedEdge) + originalGraph.getEdgeWeight(curEdge);
        originalSimpleGraph.setEdgeWeight(modifiedEdge, newEdgeWeight);
      } else {
        DefaultWeightedEdge newEdge = new DefaultWeightedEdge();
        originalSimpleGraph.addEdge(sourceVertex, targetVertex, newEdge);
        originalSimpleGraph.setEdgeWeight(newEdge, originalGraph.getEdgeWeight(curEdge));
      }
    }
    // Issue (2010/10/25): Maybe larger amount of active power transfer still means weaker
    // relationship between the two terminal buses of a certain branch,
    // thus originalSimpleGraph other than inverseGraph should be used here.
    // Use the inverse of active power to build a new weighted directed graph (the larger the active
    // power is, the close the two buses will be)
    //		SimpleDirectedWeightedGraph<String, DefaultWeightedEdge> inverseGraph =
    //			new SimpleDirectedWeightedGraph<String, DefaultWeightedEdge>(DefaultWeightedEdge.class);
    //		for (String curVertex : originalSimpleGraph.vertexSet())
    //			inverseGraph.addVertex(curVertex);
    //		for (DefaultWeightedEdge curEdge : originalSimpleGraph.edgeSet()) {
    //			String sourceVertex = originalSimpleGraph.getEdgeSource(curEdge);
    //			String targetVertex = originalSimpleGraph.getEdgeTarget(curEdge);
    //			DefaultWeightedEdge newEdge = new DefaultWeightedEdge();
    //			inverseGraph.addEdge(sourceVertex, targetVertex, newEdge);
    //			inverseGraph.setEdgeWeight(newEdge, 1 / originalSimpleGraph.getEdgeWeight(curEdge));
    //		}
    // 2. Initialize the map of vertices and the corresponding weights (distance from current vertex
    // to the first vertex)
    HashMap<String, Double> mapVertexShortestDistance = new HashMap<String, Double>();
    //		for (String thisOriginalVertex : inverseGraph.vertexSet())
    for (String thisOriginalVertex : originalSimpleGraph.vertexSet())
      mapVertexShortestDistance.put(thisOriginalVertex, 10E10);
    // The weight of the first vertex is zero
    mapVertexShortestDistance.put(thisVertex, 0.0);

    // 3. Depth-first traversing, update the shortest-path values
    Stack<String> bfiVertices =
        new Stack<String>(); // Stack to store passed vertices in a breadth-first traversing
    // The map of a weighted edge and the flag of having been visited
    //		HashMap<DefaultWeightedEdge, Boolean> mapEdgeVisited = new HashMap<DefaultWeightedEdge,
    // Boolean>();
    //		for (DefaultWeightedEdge thisEdge : inverseGraph.edgeSet())
    //			mapEdgeVisited.put(thisEdge, false);
    String currentVertex = thisVertex;
    bfiVertices.push(currentVertex);
    //		System.out.println(bfiVertices.toString());
    while (!bfiVertices.isEmpty()) {
      // Operate the following codes for those edges started with current vertex
      boolean hasNewEdge = false;
      //			for (DefaultWeightedEdge curEdge : inverseGraph.outgoingEdgesOf(currentVertex)) {
      for (DefaultWeightedEdge curEdge : originalSimpleGraph.edgesOf(currentVertex)) {
        //				if (!mapEdgeVisited.get(curEdge)) {	// Used for those edges that have not been treated
        // yet
        // 3.1. Mark current edge as already been visited
        //					mapEdgeVisited.put(curEdge, true);
        //				String nextVertex = inverseGraph.getEdgeTarget(curEdge);
        String nextVertex = originalSimpleGraph.getEdgeTarget(curEdge);
        // 3.2. Update shortest-path values
        double curSD = mapVertexShortestDistance.get(currentVertex);
        //					double edgeWeight = inverseGraph.getEdgeWeight(curEdge);
        double edgeWeight = originalSimpleGraph.getEdgeWeight(curEdge);
        double newSD = curSD + edgeWeight;
        if (mapVertexShortestDistance.get(nextVertex) > newSD) {
          hasNewEdge = true;
          mapVertexShortestDistance.put(nextVertex, newSD);
          // 3.3. Push the target vertex of current edge into the stack
          bfiVertices.push(nextVertex);
          //						System.out.println(bfiVertices.toString());
          break;
          //						System.out.println("New shortest path [" + nextVertex + "]: " + newSD);
        }
        //				}
      }
      if (!hasNewEdge) {
        bfiVertices.pop();
      }
      if (!bfiVertices.isEmpty()) currentVertex = bfiVertices.peek();
    }
    // 4. Create shortest-path digraph of current vertex
    // 4.1. Initialize the shortest-path digraph
    Multigraph<String, DefaultEdge> shortestPathGraph =
        new Multigraph<String, DefaultEdge>(DefaultEdge.class);
    // 4.2. Add all qualified edges
    //		for (DefaultWeightedEdge curEdge : inverseGraph.edgeSet()) {
    for (DefaultWeightedEdge curEdge : originalSimpleGraph.edgeSet()) {
      // 4.2.1. Evaluate if current edge is suitable
      //			String sourceVertex = inverseGraph.getEdgeSource(curEdge);
      //			String targetVertex = inverseGraph.getEdgeTarget(curEdge);
      String sourceVertex = originalSimpleGraph.getEdgeSource(curEdge);
      String targetVertex = originalSimpleGraph.getEdgeTarget(curEdge);
      //			if (Math.abs(inverseGraph.getEdgeWeight(curEdge) -
      if (originalSimpleGraph.getEdgeWeight(curEdge) > 1.0E-5) {
        if (Math.abs(
                originalSimpleGraph.getEdgeWeight(curEdge)
                    - (mapVertexShortestDistance.get(targetVertex)
                        - mapVertexShortestDistance.get(sourceVertex)))
            < 1.0E-5) {
          // 4.2.2. Add suitable edge that found just now
          DefaultEdge newEdge = new DefaultEdge();
          if (!shortestPathGraph.containsVertex(sourceVertex))
            shortestPathGraph.addVertex(sourceVertex);
          if (!shortestPathGraph.containsVertex(targetVertex))
            shortestPathGraph.addVertex(targetVertex);
          shortestPathGraph.addEdge(sourceVertex, targetVertex, newEdge);
        }
      }
    }
    return shortestPathGraph;
  }