public void CalculatePrediction(int steps_ahead) { if (steps_ahead > 0) { predicted_means_ = new DoubleMatrix[steps_ahead]; predicted_variances_ = new DoubleMatrix[steps_ahead]; DoubleMatrix previous_state_mean = estimated_state_means_[estimated_state_means_.length - 1]; DoubleMatrix previous_state_covariance = estimated_state_covariances_[estimated_state_covariances_.length - 1]; for (int ii = 0; ii < steps_ahead; ii++) { DoubleMatrix a = state_transition_matrix_ref_.mmul(previous_state_mean); DoubleMatrix R = state_transition_matrix_ref_ .mmul(previous_state_covariance) .mmul(state_transition_matrix_ref_.transpose()) .addi(transition_covariance_matrix_ref_); // One-step-ahead observation prediction. predicted_means_[ii] = observation_matrix_ref_.mmul(a); predicted_variances_[ii] = observation_matrix_ref_ .mmul(R) .mmul(observation_matrix_ref_.transpose()) .addi(observation_covariance_matrix_ref_); previous_state_mean = a; previous_state_covariance = R; } } else { // smoothing predicted_means_ = predicted_observation_means_; predicted_variances_ = predicted_observation_covariances_; } }
public DoubleMatrix free_energy(DoubleMatrix v_sample) { DoubleMatrix wv_hb = weights.mmul(v_sample.transpose()).addi(this.hbias.repmat(v_sample.rows, 1).transpose()); DoubleMatrix vb = v_sample.mmul(this.vbias.transpose()); DoubleMatrix hi = MatrixMath.sum(MatrixMath.log(MatrixMath.exp(wv_hb).addi(1.0)), 1); return hi.mul(-1.0).subi(vb); }
/** * Reconstruction entropy. This compares the similarity of two probability distributions, in this * case that would be the input and the reconstructed input with gaussian noise. This will account * for either regularization or none depending on the configuration. * * @return reconstruction error */ public double getReConstructionCrossEntropy() { DoubleMatrix preSigH = input.mmul(W).addRowVector(hBias); DoubleMatrix sigH = sigmoid(preSigH); DoubleMatrix preSigV = sigH.mmul(W.transpose()).addRowVector(vBias); DoubleMatrix sigV = sigmoid(preSigV); DoubleMatrix inner = input.mul(log(sigV)).add(oneMinus(input).mul(log(oneMinus(sigV)))); double ret = inner.rowSums().mean(); if (normalizeByInputRows) ret /= input.rows; return ret; }
private void UpdateFilteredStates() { DoubleMatrix state_transition_matrix_T = state_transition_matrix_ref_.transpose(); DoubleMatrix observation_matrix_T = observation_matrix_ref_.transpose(); for (int ii = 0; ii < number_of_observations_; ii++) { DoubleMatrix previous_state_mean = (ii == 0) ? initial_state_mean_ref_ : estimated_state_means_[ii - 1]; DoubleMatrix previous_state_covariance = (ii == 0) ? initial_state_covariance_ref_ : estimated_state_covariances_[ii - 1]; // One-step-ahead state prediction. (i) DoubleMatrix a = state_transition_matrix_ref_.mmul(previous_state_mean); DoubleMatrix R = state_transition_matrix_ref_ .mmul(previous_state_covariance) .mmul(state_transition_matrix_T) .addi(transition_covariance_matrix_ref_); // One-step-ahead observation prediction(ii) predicted_observation_means_[ii] = observation_matrix_ref_.mmul(a); predicted_observation_covariances_[ii] = observation_matrix_ref_ .mmul(R) .mmul(observation_matrix_T) .addi(observation_covariance_matrix_ref_); // if current observation is null: if (observations_ref_[ii] == null) { estimated_state_means_[ii] = a; estimated_state_covariances_[ii] = R; } else { DoubleMatrix inv_predicted_observation_covariances = InverseMatrix.inverse(predicted_observation_covariances_[ii]); DoubleMatrix R_obs_mat_T_inv_pred_obs_cov = R.mmul(observation_matrix_T).mmuli(inv_predicted_observation_covariances); // forward filtering states.(iii) estimated_state_means_[ii] = R_obs_mat_T_inv_pred_obs_cov.mmul( observations_ref_[ii].sub(predicted_observation_means_[ii])) .addi(a); estimated_state_covariances_[ii] = R.sub(R_obs_mat_T_inv_pred_obs_cov.mmul(observation_matrix_ref_).mmuli(R)); estimated_means_[ii] = observation_matrix_ref_.mmul(estimated_state_means_[ii]); estimated_covariances_[ii] = observation_matrix_ref_ .mmul(estimated_state_covariances_[ii]) .mmul(observation_matrix_T) .addi(observation_covariance_matrix_ref_); } } }
/** * 求广义逆矩阵,使用正交投影方法 * * @param ht * @return */ public DoubleMatrix getMPMatrixByOP(DoubleMatrix H) { DoubleMatrix M; try { M = H.mmul(H.transpose()); // HHt addPositiveValue(M); return H.transpose().mmul(inverse(M)); } catch (LapackException e) { M = H.transpose().mmul(H); // HtH addPositiveValue(M); return inverse(M).mmul(H.transpose()); } }
public static void main(String[] args) throws IOException { try (BufferedReader reader = new BufferedReader(new FileReader("matrix_test"))) { // read table from file List<String[]> rows = reader.lines().map(line -> line.split(" ")).collect(Collectors.toList()); double[][] values = new double[rows.size()][rows.get(0).length]; for (int i = 0; i < values.length; i++) { String[] row = rows.get(i); for (int j = 0; j < values[0].length; j++) { values[i][j] = Double.parseDouble(row[j]); } } DoubleMatrix matrix = new DoubleMatrix(values); Vector coordVector = new Vector(matrix.getRows()); // 000..00 (n-times) while (coordVector.hasNextVector()) { coordVector.nextVector(); // get next vector (eg 000..00 -> 000..01) DoubleMatrix coord = coordVector.row(); DoubleMatrix codeWord = coord.mmul(matrix); // m * G modi(codeWord, 2); String prefix = "0 0 0 0 1 "; String word = MatrixUtils.toString(codeWord); if (word.startsWith(prefix)) { System.out.println(word); } } /*// find syndromes Syndrome syndrome = new Syndrome(new DoubleMatrix(values)); syndrome.build(); // generate xls file with table HSSFWorkbook wb = new HSSFWorkbook(); HSSFSheet sheet = wb.createSheet("Syndrome table"); int rowNumber = 0; Vector syndromeVector = new Vector(values.length); putValue(sheet, rowNumber++, syndromeVector.toString(), syndrome.getErrorVector(syndromeVector.toString())); while (syndromeVector.hasNextVector()) { syndromeVector.nextVector(); putValue(sheet, rowNumber++, syndromeVector.toString(), syndrome.getErrorVector(syndromeVector.toString())); } try (FileOutputStream fileOut = new FileOutputStream("syndrome_table.xls")) { wb.write(fileOut); }*/ } }
/** * 求广义逆矩阵 Theory:最大秩分解 U*S*Vt = A C=U*sqrt(S) D=sqrt(S)*Vt <==> A=C*D MP(A) = * D'*inv(D*D')*inv(C'*C)*C' * * @param ht * @return */ public DoubleMatrix getMPMatrix(DoubleMatrix ht) { int m = ht.rows; int n = ht.columns; DoubleMatrix[] USV = Singular.fullSVD(ht); DoubleMatrix U = USV[0]; double[] s_raw = USV[1].data.clone(); // 奇异值 // 去除0 int k = 0; while (k < s_raw.length && s_raw[k] > 0.1e-5) { k++; } double[] s = new double[k]; for (int i = 0; i < s.length; i++) { s[i] = s_raw[i]; } DoubleMatrix Vt = USV[2].transpose(); // n*n int sn = s.length; for (int i = 0; i < sn; i++) { s[i] = Math.sqrt(s[i]); } // 构造m*sn sn*n矩阵 DoubleMatrix S1 = new DoubleMatrix(m, sn); DoubleMatrix S2 = new DoubleMatrix(sn, n); for (int i = 0; i < sn; i++) { S1.put(i, i, s[i]); S2.put(i, i, s[i]); } DoubleMatrix C = U.mmul(S1); DoubleMatrix D = S2.mmul(Vt); DoubleMatrix DT = D.transpose(); DoubleMatrix DD = D.mmul(DT); DoubleMatrix invDD = inverse(DD); DoubleMatrix DDD = DT.mmul(invDD); DoubleMatrix CT = C.transpose(); DoubleMatrix CC = CT.mmul(C); DoubleMatrix invCC = inverse(CC); DoubleMatrix CCC = invCC.mmul(CT); DoubleMatrix Ainv = DDD.mmul(CCC); return Ainv; }
private List<DoubleMatrix> countErrors(DoubleMatrix result, DoubleMatrix output) { ArrayList<DoubleMatrix> errors = new ArrayList<DoubleMatrix>(); List<Layer> layers = getLayers(); DoubleMatrix err = result.sub(output); errors.add(err); for (int i = layers.size() - 1; i > 1; i--) { DoubleMatrix previousErrors = errors.get(errors.size() - 1); Layer layer = layers.get(i); DoubleMatrix transposedWeights = layer.getWeights().transpose(); DoubleMatrix errorOfCurrentLayer = transposedWeights.mmul(previousErrors); errors.add(errorOfCurrentLayer); } Collections.reverse(errors); return errors; }
public void model( final SLCImage master, final SLCImage slave, Orbit masterOrbit, Orbit slaveOrbit) throws Exception { if (!masterOrbit.isInterpolated()) { logger.debug("Baseline cannot be computed, master orbit not initialized."); throw new Exception("Baseline.model_parameters: master orbit not initialized"); } else if (!slaveOrbit.isInterpolated()) { logger.debug("Baseline cannot be computed, slave orbit not initialized."); throw new Exception("Baseline.model_parameters: slave orbit not initialized"); } if (isInitialized) { logger.warn("baseline already isInitialized??? (returning)"); return; } masterWavelength = master.getRadarWavelength(); // Model r = nearRange + drange_dp*p -- p starts at 1 nearRange = master.pix2range(1.0); drange_dp = master.pix2range(2.0) - master.pix2range(1.0); nearRange -= drange_dp; // -- p starts at 1 // Set min/maxima for normalization linMin = master.currentWindow.linelo; // also used during polyval... linMax = master.currentWindow.linehi; pixMin = master.currentWindow.pixlo; pixMax = master.currentWindow.pixhi; hMin = 0.0; hMax = 5000.0; // Loop counters and sampling int cnt = 0; // matrix index final double deltaPixels = master.currentWindow.pixels() / N_POINTS_RNG; final double deltaLines = master.currentWindow.lines() / N_POINTS_AZI; final double deltaHeight = (hMax - hMin) / N_HEIGHTS; // Declare matrices for modeling Bperp // Note: for stability of normalmatrix, fill aMatrix with normalized line, etc. // perpendicular baseline DoubleMatrix bPerpMatrix = new DoubleMatrix(N_POINTS_AZI * N_POINTS_RNG * N_HEIGHTS, 1); // parallel baseline DoubleMatrix bParMatrix = new DoubleMatrix(N_POINTS_AZI * N_POINTS_RNG * N_HEIGHTS, 1); // viewing angle DoubleMatrix thetaMatrix = new DoubleMatrix(N_POINTS_AZI * N_POINTS_RNG * N_HEIGHTS, 1); // incidence angle DoubleMatrix thetaIncMatrix = new DoubleMatrix(N_POINTS_AZI * N_POINTS_RNG * N_HEIGHTS, 1); // design matrix DoubleMatrix aMatrix = new DoubleMatrix(N_POINTS_AZI * N_POINTS_RNG * N_HEIGHTS, numCoeffs); // Loop over heights(k), lines(i), pixels(j) to estimate baseline // height levels for (long k = 0; k < N_HEIGHTS; ++k) { final double height = hMin + k * deltaHeight; // azimuth direction for (long i = 0; i < N_POINTS_AZI; ++i) { final double line = master.currentWindow.linelo + i * deltaLines; Point pointOnEllips; // point, returned by lp2xyz double sTazi, sTrange; // Azimuth time for this line final double mTazi = master.line2ta(line); // xyz for master satellite from time final Point pointOnMasterOrb = masterOrbit.getXYZ(mTazi); // Continue looping in range direction for (long j = 0; j < N_POINTS_RNG; ++j) { final double pixel = master.currentWindow.pixlo + j * deltaPixels; // ______ Range time for this pixel ______ // final double m_trange = master.pix2tr(pixel); pointOnEllips = masterOrbit.lph2xyz(line, pixel, height, master); // Compute xyz for slave satellite from pointOnEllips Point pointTime = slaveOrbit.xyz2t(pointOnEllips, slave); sTazi = pointTime.y; sTrange = pointTime.x; // Slave position final Point pointOnSlaveOrb = slaveOrbit.getXYZ(sTazi); // Compute angle between near parallel orbits final Point velOnMasterOrb = masterOrbit.getXYZDot(mTazi); final Point velOnSlaveOrb = slaveOrbit.getXYZDot(sTazi); final double angleOrbits = velOnMasterOrb.angle(velOnSlaveOrb); logger.debug( "Angle between orbits master-slave (at l,p= " + line + "," + pixel + ") = " + rad2deg(angleOrbits) + " [deg]"); // Note: convergence assumed constant! orbitConvergence = angleOrbits; // final heading = angle(velOnMasterOrb,[1 0 0]) //? // orbitHeading = 0.0; // not yet used // The baseline parameters, derived from the positions (x,y,z) // alpha is angle counterclockwize(b, plane with normal=rho1=rho2) // theta is angle counterclockwize(rho1 = pointOnMasterOrb, r1 = pointOnMasterOrb - // pointOnEllips, r2 = pointOnSlaveOrb - pointOnEllips) // construct helper class BaselineComponents baselineComponents = new BaselineComponents().invoke(); compute_B_Bpar_Bperp_Theta( baselineComponents, pointOnEllips, pointOnMasterOrb, pointOnSlaveOrb); final double b = baselineComponents.getB(); final double bPar = baselineComponents.getBpar(); final double bPerp = baselineComponents.getBperp(); final double theta = baselineComponents.getTheta(); final double thetaInc = computeIncAngle(pointOnMasterOrb, pointOnEllips); // [rad]!!! // Modelling of bPerp(l,p) = a00 + a10*l + a01*p bPerpMatrix.put(cnt, 0, bPerp); bParMatrix.put(cnt, 0, bPar); thetaMatrix.put(cnt, 0, theta); thetaIncMatrix.put(cnt, 0, thetaInc); // --- b(l,p,h) = a000 + // a100*l + a010*p + a001*h + // a110*l*p + a101*l*h + a011*p*h + // a200*l^2 + a020*p^2 + a002*h^2 aMatrix.put(cnt, 0, 1.0); aMatrix.put(cnt, 1, normalize2(line, linMin, linMax)); aMatrix.put(cnt, 2, normalize2(pixel, pixMin, pixMax)); aMatrix.put(cnt, 3, normalize2(height, hMin, hMax)); aMatrix.put(cnt, 4, normalize2(line, linMin, linMax) * normalize2(pixel, pixMin, pixMax)); aMatrix.put(cnt, 5, normalize2(line, linMin, linMax) * normalize2(height, hMin, hMax)); aMatrix.put(cnt, 6, normalize2(pixel, pixMin, pixMax) * normalize2(height, hMin, hMax)); aMatrix.put(cnt, 7, sqr(normalize2(line, linMin, linMax))); aMatrix.put(cnt, 8, sqr(normalize2(pixel, pixMin, pixMax))); aMatrix.put(cnt, 9, sqr(normalize2(height, hMin, hMax))); cnt++; // b/alpha representation of baseline final double alpha = (bPar == 0 && bPerp == 0) ? Double.NaN : theta - Math.atan2(bPar, bPerp); // sign ok atan2 // horizontal/vertical representation of baseline final double bH = b * Math.cos(alpha); // sign ok final double bV = b * Math.sin(alpha); // sign ok // TODO: check sign of infinity!!! // Height ambiguity: [h] = -lambda/4pi * (r1sin(theta)/bPerp) * phi==2pi final double hAmbiguity = (bPerp == 0) ? Double.POSITIVE_INFINITY : -master.getRadarWavelength() * (pointOnMasterOrb.min(pointOnEllips)).norm() * Math.sin(theta) / (2.0 * bPerp); // Some extra info if in DEBUG unwrapMode logger.debug( "The baseline parameters for (l,p,h) = " + line + ", " + pixel + ", " + height); logger.debug("\talpha (deg), BASELINE: \t" + rad2deg(alpha) + " \t" + b); logger.debug("\tbPar, bPerp: \t" + bPar + " \t" + bPerp); logger.debug("\tbH, bV: \t" + bH + " \t" + bV); logger.debug("\tHeight ambiguity: \t" + hAmbiguity); logger.debug("\ttheta (deg): \t" + rad2deg(theta)); logger.debug("\tthetaInc (deg): \t" + rad2deg(thetaInc)); logger.debug("\tpointOnMasterOrb (x,y,z) = " + pointOnMasterOrb.toString()); logger.debug("\tpointOnSlaveOrb (x,y,z) = " + pointOnSlaveOrb.toString()); logger.debug("\tpointOnEllips (x,y,z) = " + pointOnEllips.toString()); } // loop pixels } // loop lines } // loop heights // Model all Baselines as 2d polynomial of degree 1 DoubleMatrix nMatrix = matTxmat(aMatrix, aMatrix); DoubleMatrix rhsBperp = matTxmat(aMatrix, bPerpMatrix); DoubleMatrix rhsBpar = matTxmat(aMatrix, bParMatrix); DoubleMatrix rhsTheta = matTxmat(aMatrix, thetaMatrix); DoubleMatrix rhsThetaInc = matTxmat(aMatrix, thetaIncMatrix); // DoubleMatrix Qx_hat = nMatrix; final DoubleMatrix Qx_hat = LinearAlgebraUtils.invertChol(Decompose.cholesky(nMatrix).transpose()); // TODO: refactor to _internal_ cholesky decomposition // choles(Qx_hat); // Cholesky factorisation normalmatrix // solvechol(Qx_hat,rhsBperp); // Solution Bperp coefficients in rhsB // solvechol(Qx_hat,rhsBpar); // Solution Theta coefficients in rhsTheta // solvechol(Qx_hat,rhsTheta); // Solution Theta coefficients in rhsTheta // solvechol(Qx_hat,rhsThetaInc); // Solution Theta_inc coefficients in rhsThetaInc // invertchol(Qx_hat); // Covariance matrix of normalized unknowns rhsBperp = Solve.solvePositive(nMatrix, rhsBperp); rhsBpar = Solve.solvePositive(nMatrix, rhsBpar); rhsTheta = Solve.solvePositive(nMatrix, rhsTheta); rhsThetaInc = Solve.solvePositive(nMatrix, rhsThetaInc); // Info on inversion, normalization is ok______ final DoubleMatrix yHatBperp = aMatrix.mmul(rhsBperp); final DoubleMatrix eHatBperp = bPerpMatrix.sub(yHatBperp); // DoubleMatrix Qe_hat = Qy - Qy_hat; // DoubleMatrix y_hatT = aMatrix * rhsTheta; // DoubleMatrix e_hatT = thetaMatrix - y_hatT; // Copy estimated coefficients to private fields bperpCoeffs = rhsBperp; bparCoeffs = rhsBpar; thetaCoeffs = rhsTheta; thetaIncCoeffs = rhsThetaInc; // Test inverse -- repair matrix!!! for (int i = 0; i < Qx_hat.rows; i++) { for (int j = 0; j < i; j++) { Qx_hat.put(j, i, Qx_hat.get(i, j)); } } final double maxDev = abs(nMatrix.mmul(Qx_hat).sub(DoubleMatrix.eye(Qx_hat.rows))).max(); logger.debug("BASELINE: max(abs(nMatrix*inv(nMatrix)-I)) = " + maxDev); if (maxDev > .01) { logger.warn( "BASELINE: max. deviation nMatrix*inv(nMatrix) from unity = " + maxDev + ". This is larger than .01: do not use this!"); } else if (maxDev > .001) { logger.warn( "BASELINE: max. deviation nMatrix*inv(nMatrix) from unity = " + maxDev + ". This is between 0.01 and 0.001 (maybe not use it)"); } // Output solution and give max error // --- B(l,p,h) = a000 + // a100*l + a010*p + a001*h + // a110*l*p + a101*l*h + a011*p*h + // a200*l^2 + a020*p^2 + a002*h^2 logger.debug("--------------------"); logger.debug("Result of modeling: Bperp(l,p) = a000 + a100*l + a010*p + a001*h + "); logger.debug(" a110*l*p + a101*l*h + a011*p*h + a200*l^2 + a020*p^2 + a002*h^2"); logger.debug("l,p,h in normalized coordinates [-2:2]."); logger.debug("Bperp_a000 = " + rhsBperp.get(0, 0)); logger.debug("Bperp_a100 = " + rhsBperp.get(1, 0)); logger.debug("Bperp_a010 = " + rhsBperp.get(2, 0)); logger.debug("Bperp_a001 = " + rhsBperp.get(3, 0)); logger.debug("Bperp_a110 = " + rhsBperp.get(4, 0)); logger.debug("Bperp_a101 = " + rhsBperp.get(5, 0)); logger.debug("Bperp_a011 = " + rhsBperp.get(6, 0)); logger.debug("Bperp_a200 = " + rhsBperp.get(7, 0)); logger.debug("Bperp_a020 = " + rhsBperp.get(8, 0)); logger.debug("Bperp_a002 = " + rhsBperp.get(9, 0)); double maxerr = (abs(eHatBperp)).max(); if (maxerr > 2.00) // { logger.warn("Max. error bperp modeling at 3D datapoints: " + maxerr + "m"); } else { logger.info("Max. error bperp modeling at 3D datapoints: " + maxerr + "m"); } logger.debug("--------------------"); logger.debug("Range: r(p) = r0 + dr*p"); logger.debug("l and p in un-normalized, absolute, coordinates (1:nMatrix)."); final double range1 = master.pix2range(1.0); final double range5000 = master.pix2range(5000.0); final double drange = (range5000 - range1) / 5000.0; logger.debug("range = " + (range1 - drange) + " + " + drange + "*p"); // orbit initialized isInitialized = true; }
public static double[] polyFit2D( final DoubleMatrix x, final DoubleMatrix y, final DoubleMatrix z, final int degree) throws IllegalArgumentException { logger.setLevel(Level.INFO); if (x.length != y.length || !x.isVector() || !y.isVector()) { logger.error("polyfit: require same size vectors."); throw new IllegalArgumentException("polyfit: require same size vectors."); } final int numOfObs = x.length; final int numOfUnkn = numberOfCoefficients(degree) + 1; DoubleMatrix A = new DoubleMatrix(numOfObs, numOfUnkn); // designmatrix DoubleMatrix mul; /** Set up design-matrix */ for (int p = 0; p <= degree; p++) { for (int q = 0; q <= p; q++) { mul = pow(y, (p - q)).mul(pow(x, q)); if (q == 0 && p == 0) { A = mul; } else { A = DoubleMatrix.concatHorizontally(A, mul); } } } // Fit polynomial logger.debug("Solving lin. system of equations with Cholesky."); DoubleMatrix N = A.transpose().mmul(A); DoubleMatrix rhs = A.transpose().mmul(z); // solution seems to be OK up to 10^-09! rhs = Solve.solveSymmetric(N, rhs); DoubleMatrix Qx_hat = Solve.solveSymmetric(N, DoubleMatrix.eye(N.getRows())); double maxDeviation = (N.mmul(Qx_hat).sub(DoubleMatrix.eye(Qx_hat.rows))).normmax(); logger.debug("polyfit orbit: max(abs(N*inv(N)-I)) = " + maxDeviation); // ___ report max error... (seems sometimes this can be extremely large) ___ if (maxDeviation > 1e-6) { logger.warn("polyfit orbit: max(abs(N*inv(N)-I)) = {}", maxDeviation); logger.warn("polyfit orbit interpolation unstable!"); } // work out residuals DoubleMatrix y_hat = A.mmul(rhs); DoubleMatrix e_hat = y.sub(y_hat); if (e_hat.normmax() > 0.02) { logger.warn( "WARNING: Max. polyFit2D approximation error at datapoints (x,y,or z?): {}", e_hat.normmax()); } else { logger.info( "Max. polyFit2D approximation error at datapoints (x,y,or z?): {}", e_hat.normmax()); } if (logger.isDebugEnabled()) { logger.debug("REPORTING POLYFIT LEAST SQUARES ERRORS"); logger.debug(" time \t\t\t y \t\t\t yhat \t\t\t ehat"); for (int i = 0; i < numOfObs; i++) { logger.debug( " (" + x.get(i) + "," + y.get(i) + ") :" + "\t" + y.get(i) + "\t" + y_hat.get(i) + "\t" + e_hat.get(i)); } } return rhs.toArray(); }
public static double[] polyFit(DoubleMatrix t, DoubleMatrix y, final int degree) throws IllegalArgumentException { logger.setLevel(Level.INFO); if (t.length != y.length || !t.isVector() || !y.isVector()) { logger.error("polyfit: require same size vectors."); throw new IllegalArgumentException("polyfit: require same size vectors."); } // Normalize _posting_ for numerical reasons final int numOfPoints = t.length; // Check redundancy final int numOfUnknowns = degree + 1; logger.debug("Degree of interpolating polynomial: {}", degree); logger.debug("Number of unknowns: {}", numOfUnknowns); logger.debug("Number of data points: {}", numOfPoints); if (numOfPoints < numOfUnknowns) { logger.error("Number of points is smaller than parameters solved for."); throw new IllegalArgumentException("Number of points is smaller than parameters solved for."); } // Set up system of equations to solve coeff :: Design matrix logger.debug("Setting up linear system of equations"); DoubleMatrix A = new DoubleMatrix(numOfPoints, numOfUnknowns); // work with columns for (int j = 0; j <= degree; j++) { A.putColumn(j, pow(t, j)); } // Fit polynomial through computed vector of phases logger.debug("Solving lin. system of equations with Cholesky."); DoubleMatrix N = A.transpose().mmul(A); DoubleMatrix rhs = A.transpose().mmul(y); // solution seems to be OK up to 10^-09! DoubleMatrix x = Solve.solveSymmetric(N, rhs); DoubleMatrix Qx_hat = Solve.solveSymmetric(N, DoubleMatrix.eye(N.getRows())); double maxDeviation = (N.mmul(Qx_hat).sub(DoubleMatrix.eye(Qx_hat.rows))).normmax(); logger.debug("polyfit orbit: max(abs(N*inv(N)-I)) = " + maxDeviation); // ___ report max error... (seems sometimes this can be extremely large) ___ if (maxDeviation > 1e-6) { logger.warn("polyfit orbit: max(abs(N*inv(N)-I)) = {}", maxDeviation); logger.warn("polyfit orbit interpolation unstable!"); } // work out residuals DoubleMatrix y_hat = A.mmul(x); DoubleMatrix e_hat = y.sub(y_hat); // 0.05 is already 1 wavelength! (?) if (e_hat.normmax() > 0.02) { logger.warn( "WARNING: Max. approximation error at datapoints (x,y,or z?): {}", e_hat.normmax()); } else { logger.debug("Max. approximation error at datapoints (x,y,or z?): {}", e_hat.normmax()); } if (logger.isDebugEnabled()) { logger.debug("REPORTING POLYFIT LEAST SQUARES ERRORS"); logger.debug(" time \t\t\t y \t\t\t yhat \t\t\t ehat"); for (int i = 0; i < numOfPoints; i++) { logger.debug(" " + t.get(i) + "\t" + y.get(i) + "\t" + y_hat.get(i) + "\t" + e_hat.get(i)); } for (int i = 0; i < numOfPoints - 1; i++) { // ___ check if dt is constant, not necessary for me, but may ___ // ___ signal error in header data of SLC image ___ double dt = t.get(i + 1) - t.get(i); logger.debug("Time step between point " + i + 1 + " and " + i + "= " + dt); if (Math.abs(dt - (t.get(1) - t.get(0))) > 0.001) // 1ms of difference we allow... logger.warn("WARNING: Orbit: data does not have equidistant time interval?"); } } return x.toArray(); }
/** 训练模型 */ private void train() { printInfo("训练数据载入完毕,开始训练模型………………训练数据规模" + train_set.rows + "x" + train_set.columns); // 输入矩阵初始化 横向即每列为一组输入 /* * 4 8 …… N * * 1 5 …… N * 2 6 …… N * 3 7 …… N */ P = new DoubleMatrix(NumberofInputNeurons, train_data_Count); // 测试机输出矩阵 横向 T = new DoubleMatrix(NumberofOutputNeurons, train_data_Count); // 初始化 for (int i = 0; i < train_data_Count; i++) { for (int j = 0; j < totalColCount; j++) { if (j < NumberofInputNeurons) { // 输入部分 P.put(j, i, train_set.get(i, j)); } else { T.put(j - NumberofInputNeurons, i, train_set.get(i, j)); } } } printInfo("训练矩阵初始化完毕………………开始隐含层神经元权重与阈值"); // end 初始化 long start_time_train = System.currentTimeMillis(); // 随机初始化输入权值矩阵 // 行数为隐含层神经元个数,列数为输入层神经元 /** * W11 W12 W13(第一个隐含神经元对应各输入的权值) W21 W22 W23(第二个隐含神经元对应各输入的权值) ………………………………(第N个隐含神经元对应各输入的权值) */ InputWeight = DoubleMatrix.rand(NumberofHiddenNeurons, NumberofInputNeurons); // 初始化阈值 BiasofHiddenNeurons = DoubleMatrix.rand(NumberofHiddenNeurons, 1); printInfo("隐含层神经元权重与阈值初始化完毕………………开始计算输入权重"); DoubleMatrix tmpH = new DoubleMatrix(NumberofHiddenNeurons, train_data_Count); tmpH = InputWeight.mmul(P); printInfo("输入矩阵计算权重完毕………………开始计算输入权重"); // 加阈值 // 注意横向问题 for (int i = 0; i < NumberofHiddenNeurons; i++) { for (int j = 0; j < train_data_Count; j++) { tmpH.put(i, j, tmpH.get(i, j) + BiasofHiddenNeurons.get(i, 0)); } } printInfo("输入矩阵计算阈值完毕………………开始计算输入激活函数"); // 输出矩阵 DoubleMatrix H = new DoubleMatrix(NumberofHiddenNeurons, train_data_Count); if (func.startsWith("sig")) { for (int i = 0; i < NumberofHiddenNeurons; i++) { for (int j = 0; j < train_data_Count; j++) { double tmp = tmpH.get(i, j); tmp = 1.0f / (1 + Math.exp(-tmp)); H.put(i, j, tmp); } } } else { throw new IllegalArgumentException("不支持的激活函数类型"); } printInfo("输出矩阵计算激活函数完毕,开始求解广义逆………………矩阵规模" + H.columns + "x" + H.rows); // 将H转置 DoubleMatrix Ht = H.transpose(); // 求广义逆 DoubleMatrix Ht_MP = getMPMatrix(Ht); printInfo("输出矩阵广义逆求解完毕………………开始求解输出矩阵权重"); // 隐含层输出权重矩阵= Ht_MP * Tt OutputWeight = Ht_MP.mmul(T.transpose()); printInfo("输出矩阵权重求解完毕………………"); long end_time_train = System.currentTimeMillis(); TrainingTime = (end_time_train - start_time_train) * 1.0f / 1000; printInfo("模型训练完毕………………开始评估模型"); // 误差评估 DoubleMatrix Yt = new DoubleMatrix(train_data_Count, NumberofOutputNeurons); Yt = Ht.mmul(OutputWeight); double MSE = 0; printInfo("共有" + NumberofOutputNeurons + "个输出值"); for (int out = 0; out < NumberofOutputNeurons; out++) { printInfo("计算第" + (out + 1) + "个输出值"); double mseTem = 0.0; for (int i = 0; i < train_data_Count; i++) { System.out.println(Yt.get(i, out) + " " + T.get(out, i)); mseTem += (Yt.get(i, out) - T.get(out, i)) * (Yt.get(i, out) - T.get(out, i)); } printInfo( "第" + NumberofOutputNeurons + "个输出值计算完毕,MSE=" + Math.sqrt(mseTem / train_data_Count)); MSE += mseTem; } TrainingAccuracy = Math.sqrt(MSE / train_data_Count); printInfo("模型评估完毕………………"); }
public DoubleMatrix propdown(DoubleMatrix h) { return MatrixMath.sigmoid(h.mmul(this.weights).addi(vbias.repmat(v_data.rows, 1))); }
/** * 测试模型 * * @param filename */ public void test_model(String filename, int testCount) { try { this.test_data_Count = testCount; test_set = loadMatrix(filename, test_data_Count, totalColCount); } catch (Exception e) { e.printStackTrace(); } printInfo("测试数据载入完毕…………"); // 测试数据输入矩阵初始化 横向即每列为一组输入 testP = new DoubleMatrix(NumberofInputNeurons, test_data_Count); // 测试机输出矩阵 横向 testT = new DoubleMatrix(NumberofOutputNeurons, test_data_Count); // 初始化 for (int i = 0; i < test_data_Count; i++) { for (int j = 0; j < totalColCount; j++) { if (j < NumberofInputNeurons) { // 输入部分 testP.put(j, i, test_set.get(i, j)); } else { testT.put(j - NumberofInputNeurons, i, test_set.get(i, j)); } } } // end 初始化 printInfo("测试数据初始化完毕…………"); long start_time_test = System.currentTimeMillis(); // 计算输入权重与阈值部分 DoubleMatrix tmpH = new DoubleMatrix(NumberofHiddenNeurons, test_data_Count); tmpH = InputWeight.mmul(testP); printInfo("权重计算完毕…………"); // 加阈值 // 注意横向问题 for (int i = 0; i < NumberofHiddenNeurons; i++) { for (int j = 0; j < test_data_Count; j++) { tmpH.put(i, j, tmpH.get(i, j) + BiasofHiddenNeurons.get(i, 0)); } } printInfo("阈值计算完毕…………"); // 输出矩阵 DoubleMatrix H = new DoubleMatrix(NumberofHiddenNeurons, test_data_Count); if (func.startsWith("sig")) { for (int i = 0; i < NumberofHiddenNeurons; i++) { for (int j = 0; j < test_data_Count; j++) { double tmp = tmpH.get(i, j); tmp = 1.0f / (1 + Math.exp(-tmp)); H.put(i, j, tmp); } } } else { throw new IllegalArgumentException("不支持的激活函数类型"); } printInfo("激活函数计算完毕…………"); // 将H转置 DoubleMatrix Ht = H.transpose(); // 测试误差 DoubleMatrix Yt = new DoubleMatrix(test_data_Count, NumberofOutputNeurons); Yt = Ht.mmul(OutputWeight); printInfo("测试完毕…………"); long end_time_test = System.currentTimeMillis(); TestingTime = (end_time_test - start_time_test) * 1.0f / 1000; double MSE = 0; printInfo("共有" + NumberofOutputNeurons + "个输出值"); for (int out = 0; out < NumberofOutputNeurons; out++) { printInfo("计算第" + (out + 1) + "个输出值"); double mseTem = 0.0; for (int i = 0; i < test_data_Count; i++) { mseTem += (Yt.get(i, out) - testT.get(out, i)) * (Yt.get(i, out) - testT.get(out, i)); } printInfo( "第" + NumberofOutputNeurons + "个输出值计算完毕,MSE=" + Math.sqrt(mseTem / train_data_Count)); MSE += mseTem; } TestingAccuracy = Math.sqrt(MSE / test_data_Count); printInfo("计算MSE完毕…………"); }
public static void main(String[] args) { Scanner s = new Scanner(System.in); int n = s.nextInt(); int nn = n; DoubleMatrix d = DoubleMatrix.zeros(2 * n, 2 * n); DoubleMatrix d2 = DoubleMatrix.zeros(n, n); for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { d.put(i, j, s.nextDouble()); d2.put(i, j, d.get(i, j)); } } // d2 = new DoubleMatrix(d.data); System.out.println(d); System.out.println(d); List<Integer> L = new ArrayList<Integer>(2 * n); List<Double> R = new ArrayList<Double>(2 * n); for (int i = 0; i < 2 * n; i++) { L.add(0); R.add(0.0); } // inicjalizacja lisci - jako etykiety kolejne liczby od 0 for (int i = 0; i < n; i++) { L.set(i, i); } // V - drzewo addytywne, które tworzymy ArrayList[] V = new ArrayList[2 * n]; for (int i = 0; i < V.length; i++) { V[i] = new ArrayList<Integer>(); } double suma, rmin, rr; int i, j, vertNum = n; while (n > 3) { // wyznaczanie r dla każdego liścia for (int a = 0; a < n; a++) { suma = 0; for (int b = 0; b < n; b++) { suma = suma + d.get(L.get(a), L.get(b)); } suma = suma / (n - 2); R.set(a, suma); } // wyznaczania sąsiadów na podstawie r i = 0; j = 1; rmin = d.get(L.get(0), L.get(1)) - (R.get(0) + R.get(1)); for (int a = 0; a < n - 1; a++) { for (int b = a + 1; b < n; b++) { rr = d.get(L.get(a), L.get(b)) - (R.get(a) + R.get(b)); if (rr < rmin) { rmin = rr; i = a; j = b; } } } // usuniecie ze zbioru lisci i,j oraz dodanie k L.set(n, vertNum); vertNum++; i = L.remove(i); j = L.remove(j - 1); n = n - 1; // uaktualnienie d dla każdego pozostałego liścia for (int l = 0; l < n - 1; l++) { double value = (d.get(i, L.get(l)) + d.get(j, L.get(l)) - d.get(i, j)) / 2; d.put(L.get(n - 1), L.get(l), value); d.put(L.get(l), L.get(n - 1), value); } // dodanie odpowiednich krawędzi do tworzonego drzewa V[i].add((vertNum - 1)); V[j].add((vertNum - 1)); V[vertNum - 1].add(i); V[vertNum - 1].add(j); // wyznaczenie odległości między nowym wierzchołkiem oraz i,j double value = (d.get(i, j) + d.get(i, L.get(0)) - d.get(j, L.get(0))) / 2; d.put(i, vertNum - 1, value); d.put(vertNum - 1, i, value); d.put(j, vertNum - 1, d.get(i, j) - d.get(i, vertNum - 1)); d.put(vertNum - 1, j, d.get(i, j) - d.get(i, vertNum - 1)); } // 3 elementowe drzewo double value; value = (d.get(L.get(0), L.get(1)) + d.get(L.get(0), L.get(2)) - d.get(L.get(1), L.get(2))) / 2; d.put(L.get(0), vertNum, value); d.put(vertNum, L.get(0), value); value = (d.get(L.get(0), L.get(1)) + d.get(L.get(1), L.get(2)) - d.get(L.get(0), L.get(2))) / 2; d.put(L.get(1), vertNum, value); d.put(vertNum, L.get(1), value); value = (d.get(L.get(0), L.get(2)) + d.get(L.get(1), L.get(2)) - d.get(L.get(0), L.get(1))) / 2; d.put(L.get(2), vertNum, value); d.put(vertNum, L.get(2), value); V[vertNum].add(L.get(0)); V[vertNum].add(L.get(1)); V[vertNum].add(L.get(2)); V[L.get(0)].add(vertNum); V[L.get(1)].add(vertNum); V[L.get(2)].add(vertNum); // wypisanie wyników System.out.println(d); // DoubleMatrix w2 = DoubleMatrix.zeros(2*n, 2*n); ArrayList w = new ArrayList<Integer>(); for (int a = 0; a <= vertNum; a++) { System.out.print(a); System.out.print(" : "); for (int b = 0; b < V[a].size(); b++) { System.out.print(V[a].get(b)); System.out.print(" "); // w2.put(a,b,Integer.parseInt(V[a].get(b).toString())); w.add(V[a].get(b)); } System.out.println(""); } DoubleMatrix A = DoubleMatrix.zeros((nn * (nn - 1)) / 2, vertNum); DoubleMatrix g = DoubleMatrix.zeros((nn * (nn - 1)) / 2, 1); double blad = nk(A, d2, g, V, vertNum); // wrzucam to do siebie - mkd System.out.println(A); DoubleMatrix p = (new DoubleMatrix(A.rows, A.columns, A.data)).transpose(); System.out.println(p.rows + " " + p.columns); DoubleMatrix p2 = (new DoubleMatrix(p.rows, p.columns, p.data)) .mmul((new DoubleMatrix(A.rows, A.columns, A.data))); System.out.println("p2: " + p2); DoubleMatrix p3 = MatrixFunctions.pow(p2, -1); System.out.println("p3: " + p3); DoubleMatrix p4 = p3.mmul(p); DoubleMatrix b = p4.mmul(g); // DoubleMatrix b = MatrixFunctions.pow(A.transpose().mmul(A), -1).mmul(A.transpose()).mmul(g); System.out.println(g); System.out.println(b); System.out.println("Kwadrat bledu wynosi " + blad); }
private void costantiniUnwrap() throws LPException { final int ny = wrappedPhase.rows - 1; // start from Zero! final int nx = wrappedPhase.columns - 1; // start from Zero! if (wrappedPhase.isVector()) throw new IllegalArgumentException("Input must be 2D array"); if (wrappedPhase.rows < 2 || wrappedPhase.columns < 2) throw new IllegalArgumentException("Size of input must be larger than 2"); // Default weight DoubleMatrix w1 = DoubleMatrix.ones(ny + 1, 1); w1.put(0, 0.5); w1.put(w1.length - 1, 0.5); DoubleMatrix w2 = DoubleMatrix.ones(1, nx + 1); w2.put(0, 0.5); w2.put(w2.length - 1, 0.5); DoubleMatrix weight = w1.mmul(w2); DoubleMatrix i, j, I_J, IP1_J, I_JP1; DoubleMatrix Psi1, Psi2; DoubleMatrix[] ROWS; // Compute partial derivative Psi1, eqt (1,3) i = intRangeDoubleMatrix(0, ny - 1); j = intRangeDoubleMatrix(0, nx); ROWS = grid2D(i, j); I_J = JblasUtils.sub2ind(wrappedPhase.rows, ROWS[0], ROWS[1]); IP1_J = JblasUtils.sub2ind(wrappedPhase.rows, ROWS[0].add(1), ROWS[1]); Psi1 = JblasUtils.getMatrixFromIdx(wrappedPhase, IP1_J) .sub(JblasUtils.getMatrixFromIdx(wrappedPhase, I_J)); Psi1 = UnwrapUtils.wrapDoubleMatrix(Psi1); // Compute partial derivative Psi2, eqt (2,4) i = intRangeDoubleMatrix(0, ny); j = intRangeDoubleMatrix(0, nx - 1); ROWS = grid2D(i, j); I_J = JblasUtils.sub2ind(wrappedPhase.rows, ROWS[0], ROWS[1]); I_JP1 = JblasUtils.sub2ind(wrappedPhase.rows, ROWS[0], ROWS[1].add(1)); Psi2 = JblasUtils.getMatrixFromIdx(wrappedPhase, I_JP1) .sub(JblasUtils.getMatrixFromIdx(wrappedPhase, I_J)); Psi2 = UnwrapUtils.wrapDoubleMatrix(Psi2); // Compute beq DoubleMatrix beq = DoubleMatrix.zeros(ny, nx); i = intRangeDoubleMatrix(0, ny - 1); j = intRangeDoubleMatrix(0, nx - 1); ROWS = grid2D(i, j); I_J = JblasUtils.sub2ind(Psi1.rows, ROWS[0], ROWS[1]); I_JP1 = JblasUtils.sub2ind(Psi1.rows, ROWS[0], ROWS[1].add(1)); beq.addi(JblasUtils.getMatrixFromIdx(Psi1, I_JP1).sub(JblasUtils.getMatrixFromIdx(Psi1, I_J))); I_J = JblasUtils.sub2ind(Psi2.rows, ROWS[0], ROWS[1]); I_JP1 = JblasUtils.sub2ind(Psi2.rows, ROWS[0].add(1), ROWS[1]); beq.subi(JblasUtils.getMatrixFromIdx(Psi2, I_JP1).sub(JblasUtils.getMatrixFromIdx(Psi2, I_J))); beq.muli(-1 / (2 * Constants._PI)); for (int k = 0; k < beq.length; k++) { beq.put(k, Math.round(beq.get(k))); } beq.reshape(beq.length, 1); logger.debug("Constraint matrix"); i = intRangeDoubleMatrix(0, ny - 1); j = intRangeDoubleMatrix(0, nx - 1); ROWS = grid2D(i, j); DoubleMatrix ROW_I_J = JblasUtils.sub2ind(i.length, ROWS[0], ROWS[1]); int nS0 = nx * ny; // Use by S1p, S1m DoubleMatrix[] COLS; COLS = grid2D(i, j); DoubleMatrix COL_IJ_1 = JblasUtils.sub2ind(i.length, COLS[0], COLS[1]); COLS = grid2D(i, j.add(1)); DoubleMatrix COL_I_JP1 = JblasUtils.sub2ind(i.length, COLS[0], COLS[1]); int nS1 = (nx + 1) * (ny); // SOAPBinding.Use by S2p, S2m COLS = grid2D(i, j); DoubleMatrix COL_IJ_2 = JblasUtils.sub2ind(i.length + 1, COLS[0], COLS[1]); COLS = grid2D(i.add(1), j); DoubleMatrix COL_IP1_J = JblasUtils.sub2ind(i.length + 1, COLS[0], COLS[1]); int nS2 = nx * (ny + 1); // Equality constraint matrix (Aeq) /* S1p = + sparse(ROW_I_J, COL_I_JP1,1,nS0,nS1) ... - sparse(ROW_I_J, COL_IJ_1,1,nS0,nS1); S1m = -S1p; S2p = - sparse(ROW_I_J, COL_IP1_J,1,nS0,nS2) ... + sparse(ROW_I_J, COL_IJ_2,1,nS0,nS2); S2m = -S2p; */ // ToDo: Aeq matrix should be sparse from it's initialization, look into JblasMatrix factory for // howto // ...otherwise even a data set of eg 40x40 pixels will exhaust heap: // ... dimension of Aeq (equality constraints) matrix for 30x30 input is 1521x6240 matrix // ... dimension of Aeq ( ) matrix for 50x50 input is 2401x9800 // ... dimension of Aeq ( ) matrix for 512x512 input is 261121x1046528 DoubleMatrix S1p = JblasUtils.setUpMatrixFromIdx(nS0, nS1, ROW_I_J, COL_I_JP1) .sub(JblasUtils.setUpMatrixFromIdx(nS0, nS1, ROW_I_J, COL_IJ_1)); DoubleMatrix S1m = S1p.neg(); DoubleMatrix S2p = JblasUtils.setUpMatrixFromIdx(nS0, nS2, ROW_I_J, COL_IP1_J) .neg() .add(JblasUtils.setUpMatrixFromIdx(nS0, nS2, ROW_I_J, COL_IJ_2)); DoubleMatrix S2m = S2p.neg(); DoubleMatrix Aeq = concatHorizontally(concatHorizontally(S1p, S1m), concatHorizontally(S2p, S2m)); final int nObs = Aeq.columns; final int nUnkn = Aeq.rows; DoubleMatrix c1 = JblasUtils.getMatrixFromRange(0, ny, 0, weight.columns, weight); DoubleMatrix c2 = JblasUtils.getMatrixFromRange(0, weight.rows, 0, nx, weight); c1.reshape(c1.length, 1); c2.reshape(c2.length, 1); DoubleMatrix cost = DoubleMatrix.concatVertically( DoubleMatrix.concatVertically(c1, c1), DoubleMatrix.concatVertically(c2, c2)); logger.debug("Minimum network flow resolution"); StopWatch clockLP = new StopWatch(); LinearProgram lp = new LinearProgram(cost.data); lp.setMinProblem(true); boolean[] integerBool = new boolean[nObs]; double[] lowerBound = new double[nObs]; double[] upperBound = new double[nObs]; for (int k = 0; k < nUnkn; k++) { lp.addConstraint(new LinearEqualsConstraint(Aeq.getRow(k).toArray(), beq.get(k), "cost")); } for (int k = 0; k < nObs; k++) { integerBool[k] = true; lowerBound[k] = 0; upperBound[k] = 99999; } // setup bounds and integer nature lp.setIsinteger(integerBool); lp.setUpperbound(upperBound); lp.setLowerbound(lowerBound); LinearProgramSolver solver = SolverFactory.newDefault(); // double[] solution; // solution = solver.solve(lp); DoubleMatrix solution = new DoubleMatrix(solver.solve(lp)); clockLP.stop(); logger.debug("Total GLPK time: {} [sec]", (double) (clockLP.getElapsedTime()) / 1000); // Displatch the LP solution int offset; int[] idx1p = JblasUtils.intRangeIntArray(0, nS1 - 1); DoubleMatrix x1p = solution.get(idx1p); x1p.reshape(ny, nx + 1); offset = idx1p[nS1 - 1] + 1; int[] idx1m = JblasUtils.intRangeIntArray(offset, offset + nS1 - 1); DoubleMatrix x1m = solution.get(idx1m); x1m.reshape(ny, nx + 1); offset = idx1m[idx1m.length - 1] + 1; int[] idx2p = JblasUtils.intRangeIntArray(offset, offset + nS2 - 1); DoubleMatrix x2p = solution.get(idx2p); x2p.reshape(ny + 1, nx); offset = idx2p[idx2p.length - 1] + 1; int[] idx2m = JblasUtils.intRangeIntArray(offset, offset + nS2 - 1); DoubleMatrix x2m = solution.get(idx2m); x2m.reshape(ny + 1, nx); // Compute the derivative jumps, eqt (20,21) DoubleMatrix k1 = x1p.sub(x1m); DoubleMatrix k2 = x2p.sub(x2m); // (?) Round to integer solution if (roundK == true) { for (int idx = 0; idx < k1.length; idx++) { k1.put(idx, FastMath.floor(k1.get(idx))); } for (int idx = 0; idx < k2.length; idx++) { k2.put(idx, FastMath.floor(k2.get(idx))); } } // Sum the jumps with the wrapped partial derivatives, eqt (10,11) k1.reshape(ny, nx + 1); k2.reshape(ny + 1, nx); k1.addi(Psi1.div(Constants._TWO_PI)); k2.addi(Psi2.div(Constants._TWO_PI)); // Integrate the partial derivatives, eqt (6) // cumsum() method in JblasTester -> see cumsum_demo() in JblasTester.cumsum_demo() DoubleMatrix k2_temp = DoubleMatrix.concatHorizontally(DoubleMatrix.zeros(1), k2.getRow(0)); k2_temp = JblasUtils.cumsum(k2_temp, 1); DoubleMatrix k = DoubleMatrix.concatVertically(k2_temp, k1); k = JblasUtils.cumsum(k, 1); // Unwrap - final solution unwrappedPhase = k.mul(Constants._TWO_PI); }
public static void main(String[] args) { DoubleMatrix A = readJamaMatrixFromFile(".\\src\\test\\resources\\10_10_A"); DoubleMatrix B = readJamaMatrixFromFile(".\\src\\test\\resources\\10_10_B"); Long start = System.currentTimeMillis(); DoubleMatrix result = A.mmul(B); Long end = System.currentTimeMillis(); Long time = end - start; System.out.println("Time for JBLAS multiply 10x10 is: " + time); A = readJamaMatrixFromFile(".\\src\\test\\resources\\100_100_M1"); B = readJamaMatrixFromFile(".\\src\\test\\resources\\100_100_M2"); start = System.currentTimeMillis(); result = A.mmul(B); end = System.currentTimeMillis(); time = end - start; System.out.println("Time for JBLAS multiply 100x100 is: " + time); A = readJamaMatrixFromFile(".\\src\\test\\resources\\200_200_A"); B = readJamaMatrixFromFile(".\\src\\test\\resources\\200_200_B"); start = System.currentTimeMillis(); result = A.mmul(B); end = System.currentTimeMillis(); time = end - start; System.out.println("Time for JBLAS multiply 200x200 is: " + time); A = readJamaMatrixFromFile(".\\src\\test\\resources\\300_300_A"); B = readJamaMatrixFromFile(".\\src\\test\\resources\\300_300_B"); start = System.currentTimeMillis(); result = A.mmul(B); end = System.currentTimeMillis(); time = end - start; System.out.println("Time for JBLAS multiply 300x300 is: " + time); A = readJamaMatrixFromFile(".\\src\\test\\resources\\500_500_A"); B = readJamaMatrixFromFile(".\\src\\test\\resources\\500_500_B"); start = System.currentTimeMillis(); result = A.mmul(B); end = System.currentTimeMillis(); time = end - start; System.out.println("Time for JBLAS multiply 500x500 is: " + time); A = readJamaMatrixFromFile(".\\src\\test\\resources\\1000_1000_A"); B = readJamaMatrixFromFile(".\\src\\test\\resources\\1000_1000_B"); start = System.currentTimeMillis(); result = A.mmul(B); end = System.currentTimeMillis(); time = end - start; System.out.println("Time for JBLAS multiply 1000x1000 is: " + time); // Matrix Multiply x2 A = readJamaMatrixFromFile(".\\src\\test\\resources\\2_2_A"); B = readJamaMatrixFromFile(".\\src\\test\\resources\\2_2_B"); start = System.currentTimeMillis(); result = A.mmul(B); end = System.currentTimeMillis(); time = end - start; System.out.println("Time for JBLAS multiply 2x2 is: " + time); A = readJamaMatrixFromFile(".\\src\\test\\resources\\4_4_A"); B = readJamaMatrixFromFile(".\\src\\test\\resources\\4_4_B"); start = System.currentTimeMillis(); result = A.mmul(B); end = System.currentTimeMillis(); time = end - start; System.out.println("Time for JBLAS multiply 4x4 is: " + time); A = readJamaMatrixFromFile(".\\src\\test\\resources\\8_8_A"); B = readJamaMatrixFromFile(".\\src\\test\\resources\\8_8_A"); start = System.currentTimeMillis(); result = A.mmul(B); end = System.currentTimeMillis(); time = end - start; System.out.println("Time for JBLAS multiply 8x8 is: " + time); A = readJamaMatrixFromFile(".\\src\\test\\resources\\16_16_A"); B = readJamaMatrixFromFile(".\\src\\test\\resources\\16_16_A"); start = System.currentTimeMillis(); result = A.mmul(B); end = System.currentTimeMillis(); time = end - start; System.out.println("Time for JBLAS multiply 16x16 is: " + time); A = readJamaMatrixFromFile(".\\src\\test\\resources\\32_32_A"); B = readJamaMatrixFromFile(".\\src\\test\\resources\\32_32_A"); start = System.currentTimeMillis(); result = A.mmul(B); end = System.currentTimeMillis(); time = end - start; System.out.println("Time for JBLAS multiply 32x32 is: " + time); A = readJamaMatrixFromFile(".\\src\\test\\resources\\64_64_A"); B = readJamaMatrixFromFile(".\\src\\test\\resources\\64_64_A"); start = System.currentTimeMillis(); result = A.mmul(B); end = System.currentTimeMillis(); time = end - start; System.out.println("Time for JBLAS multiply 64x64 is: " + time); A = readJamaMatrixFromFile(".\\src\\test\\resources\\128_128_A"); B = readJamaMatrixFromFile(".\\src\\test\\resources\\128_128_A"); start = System.currentTimeMillis(); result = A.mmul(B); end = System.currentTimeMillis(); time = end - start; System.out.println("Time for JBLAS multiply 128x128 is: " + time); A = readJamaMatrixFromFile(".\\src\\test\\resources\\256_256_A"); B = readJamaMatrixFromFile(".\\src\\test\\resources\\256_256_A"); start = System.currentTimeMillis(); result = A.mmul(B); end = System.currentTimeMillis(); time = end - start; System.out.println("Time for JBLAS multiply 256x256 is: " + time); A = readJamaMatrixFromFile(".\\src\\test\\resources\\512_512_A"); B = readJamaMatrixFromFile(".\\src\\test\\resources\\512_512_A"); start = System.currentTimeMillis(); result = A.mmul(B); end = System.currentTimeMillis(); time = end - start; System.out.println("Time for JBLAS multiply 512x512 is: " + time); A = readJamaMatrixFromFile(".\\src\\test\\resources\\1024_1024_A"); B = readJamaMatrixFromFile(".\\src\\test\\resources\\1024_1024_A"); start = System.currentTimeMillis(); result = A.mmul(B); end = System.currentTimeMillis(); time = end - start; System.out.println("Time for JBLAS multiply 1024x1024 is: " + time); A = readJamaMatrixFromFile(".\\src\\test\\resources\\2048_2048_A"); B = readJamaMatrixFromFile(".\\src\\test\\resources\\2048_2048_A"); start = System.currentTimeMillis(); result = A.mmul(B); end = System.currentTimeMillis(); time = end - start; System.out.println("Time for JBLAS multiply 2048x2048 is: " + time); A = readJamaMatrixFromFile(".\\src\\test\\resources\\4096_4096_A"); B = readJamaMatrixFromFile(".\\src\\test\\resources\\4096_4096_A"); start = System.currentTimeMillis(); result = A.mmul(B); end = System.currentTimeMillis(); time = end - start; System.out.println("Time for JBLAS multiply 4096x4096 is: " + time); // LU Decomp A = readJamaMatrixFromFile(".\\src\\test\\resources\\2_2_A"); Decompose lucalc = new Decompose(); start = System.currentTimeMillis(); Decompose.LUDecomposition<DoubleMatrix> resultLu = lucalc.lu(A); end = System.currentTimeMillis(); time = end - start; System.out.println("Time for JBLAS LU 2x2 is: " + time); A = readJamaMatrixFromFile(".\\src\\test\\resources\\4_4_A"); // Decompose lucalc = new Decompose(); start = System.currentTimeMillis(); resultLu = lucalc.lu(A); end = System.currentTimeMillis(); time = end - start; System.out.println("Time for JBLAS LU 4x4 is: " + time); A = readJamaMatrixFromFile(".\\src\\test\\resources\\8_8_A"); start = System.currentTimeMillis(); resultLu = lucalc.lu(A); end = System.currentTimeMillis(); time = end - start; System.out.println("Time for JBLAS LU 8x8 is: " + time); A = readJamaMatrixFromFile(".\\src\\test\\resources\\16_16_A"); // Decompose lucalc = new Decompose(); start = System.currentTimeMillis(); resultLu = lucalc.lu(A); end = System.currentTimeMillis(); time = end - start; System.out.println("Time for JBLAS LU 16x16 is: " + time); A = readJamaMatrixFromFile(".\\src\\test\\resources\\32_32_A"); start = System.currentTimeMillis(); resultLu = lucalc.lu(A); end = System.currentTimeMillis(); time = end - start; System.out.println("Time for JBLAS LU 32x32 is: " + time); A = readJamaMatrixFromFile(".\\src\\test\\resources\\64_64_A"); // Decompose lucalc = new Decompose(); start = System.currentTimeMillis(); resultLu = lucalc.lu(A); end = System.currentTimeMillis(); time = end - start; System.out.println("Time for JBLAS LU 64x64 is: " + time); A = readJamaMatrixFromFile(".\\src\\test\\resources\\128_128_A"); start = System.currentTimeMillis(); resultLu = lucalc.lu(A); end = System.currentTimeMillis(); time = end - start; System.out.println("Time for JBLAS LU 128x128 is: " + time); A = readJamaMatrixFromFile(".\\src\\test\\resources\\256_256_A"); // Decompose lucalc = new Decompose(); start = System.currentTimeMillis(); resultLu = lucalc.lu(A); end = System.currentTimeMillis(); time = end - start; System.out.println("Time for JBLAS LU 256x256 is: " + time); A = readJamaMatrixFromFile(".\\src\\test\\resources\\512_512_A"); start = System.currentTimeMillis(); resultLu = lucalc.lu(A); end = System.currentTimeMillis(); time = end - start; System.out.println("Time for JBLAS LU 512x512 is: " + time); A = readJamaMatrixFromFile(".\\src\\test\\resources\\1024_1024_A"); // Decompose lucalc = new Decompose(); start = System.currentTimeMillis(); resultLu = lucalc.lu(A); end = System.currentTimeMillis(); time = end - start; System.out.println("Time for JBLAS LU 1024x1024 is: " + time); A = readJamaMatrixFromFile(".\\src\\test\\resources\\2048_2048_A"); start = System.currentTimeMillis(); resultLu = lucalc.lu(A); end = System.currentTimeMillis(); time = end - start; System.out.println("Time for JBLAS LU 2048x2048 is: " + time); A = readJamaMatrixFromFile(".\\src\\test\\resources\\4096_4096_A"); start = System.currentTimeMillis(); resultLu = lucalc.lu(A); end = System.currentTimeMillis(); time = end - start; System.out.println("Time for JBLAS LU 4096x4096 is: " + time); }