Пример #1
0
 protected int findNullTypeAnnotationMismatch(TypeBinding requiredType, TypeBinding providedType) {
   int severity = 0;
   if (requiredType instanceof ArrayBinding) {
     long[] requiredDimsTagBits = ((ArrayBinding) requiredType).nullTagBitsPerDimension;
     if (requiredDimsTagBits != null) {
       int dims = requiredType.dimensions();
       if (requiredType.dimensions() == providedType.dimensions()) {
         long[] providedDimsTagBits = ((ArrayBinding) providedType).nullTagBitsPerDimension;
         if (providedDimsTagBits == null) {
           severity = 1; // required is annotated, provided not, need unchecked conversion
         } else {
           for (int i = 0; i < dims; i++) {
             long requiredBits = requiredDimsTagBits[i] & TagBits.AnnotationNullMASK;
             long providedBits = providedDimsTagBits[i] & TagBits.AnnotationNullMASK;
             if (requiredBits != 0 && requiredBits != providedBits) {
               if (providedBits == 0)
                 severity = 1; // need unchecked conversion regarding type detail
               else return 2; // mismatching annotations
             }
           }
         }
       }
     }
   }
   return severity;
 }
  public void resolveReceiver() {
    if (this.receiver == null) return;

    if (this.receiver.modifiers != 0) {
      this.scope
          .problemReporter()
          .illegalModifiers(
              this.receiver.declarationSourceStart, this.receiver.declarationSourceEnd);
    }

    TypeBinding resolvedReceiverType = this.receiver.type.resolvedType;
    if (this.binding == null
        || resolvedReceiverType == null
        || !resolvedReceiverType.isValidBinding()) {
      return;
    }

    ReferenceBinding declaringClass = this.binding.declaringClass;
    /* neither static methods nor methods in anonymous types can have explicit 'this' */
    if (this.isStatic() || declaringClass.isAnonymousType()) {
      this.scope.problemReporter().disallowedThisParameter(this.receiver);
      return; // No need to do further validation
    }

    ReferenceBinding enclosingReceiver = this.scope.enclosingReceiverType();
    if (this.isConstructor()) {
      /* Only non static member types or local types can declare explicit 'this' params in constructors */
      if (declaringClass.isStatic()
          || (declaringClass.tagBits & (TagBits.IsLocalType | TagBits.IsMemberType)) == 0) {
          /* neither member nor local type */
        this.scope.problemReporter().disallowedThisParameter(this.receiver);
        return; // No need to do further validation
      }
      enclosingReceiver = enclosingReceiver.enclosingType();
    }

    char[][] tokens =
        (this.receiver.qualifyingName == null) ? null : this.receiver.qualifyingName.getName();
    if (this.isConstructor()) {
      if (tokens == null
          || tokens.length > 1
          || !CharOperation.equals(enclosingReceiver.sourceName(), tokens[0])) {
        this.scope
            .problemReporter()
            .illegalQualifierForExplicitThis(this.receiver, enclosingReceiver);
        this.receiver.qualifyingName = null;
      }
    } else if (tokens != null && tokens.length > 0) {
      this.scope.problemReporter().illegalQualifierForExplicitThis2(this.receiver);
      this.receiver.qualifyingName = null;
    }

    if (TypeBinding.notEquals(enclosingReceiver, resolvedReceiverType)) {
      this.scope.problemReporter().illegalTypeForExplicitThis(this.receiver, enclosingReceiver);
    }

    if (this.receiver.type.hasNullTypeAnnotation(AnnotationPosition.ANY)) {
      this.scope.problemReporter().nullAnnotationUnsupportedLocation(this.receiver.type);
    }
  }
  public TypeBinding resolveType(BlockScope scope) {
    this.constant = Constant.NotAConstant;
    TypeBinding expressionType = this.expression.resolveType(scope);
    TypeBinding checkedType = this.type.resolveType(scope, true /* check bounds*/);
    if (expressionType == null || checkedType == null) return null;

    if (!checkedType.isReifiable()) {
      scope.problemReporter().illegalInstanceOfGenericType(checkedType, this);
    } else if ((expressionType != TypeBinding.NULL
            && expressionType.isBaseType()) // disallow autoboxing
        || !checkCastTypesCompatibility(scope, checkedType, expressionType, null)) {
      scope.problemReporter().notCompatibleTypesError(this, expressionType, checkedType);
    }
    return this.resolvedType = TypeBinding.BOOLEAN;
  }
Пример #4
0
  protected boolean isBoxingCompatible(
      TypeBinding expressionType, TypeBinding targetType, Expression expression, Scope scope) {
    if (scope.isBoxingCompatibleWith(expressionType, targetType)) return true;

    return expressionType
            .isBaseType() // narrowing then boxing ? Only allowed for some target types see 362279
        && !targetType.isBaseType()
        && !targetType.isTypeVariable()
        && scope.compilerOptions().sourceLevel
            >= org.eclipse.jdt.internal.compiler.classfmt.ClassFileConstants.JDK1_5 // autoboxing
        && (targetType.id == TypeIds.T_JavaLangByte
            || targetType.id == TypeIds.T_JavaLangShort
            || targetType.id == TypeIds.T_JavaLangCharacter)
        && expression.isConstantValueOfTypeAssignableToType(
            expressionType, scope.environment().computeBoxingType(targetType));
  }
Пример #5
0
 /** Analysing arguments of MessageSend, ExplicitConstructorCall, AllocationExpression. */
 protected void analyseArguments(
     BlockScope currentScope,
     FlowContext flowContext,
     FlowInfo flowInfo,
     MethodBinding methodBinding,
     Expression[] arguments) {
   // compare actual null-status against parameter annotations of the called method:
   if (arguments != null) {
     CompilerOptions compilerOptions = currentScope.compilerOptions();
     boolean considerTypeAnnotations =
         compilerOptions.sourceLevel >= ClassFileConstants.JDK1_8
             && compilerOptions.isAnnotationBasedNullAnalysisEnabled;
     boolean hasJDK15NullAnnotations = methodBinding.parameterNonNullness != null;
     int numParamsToCheck = methodBinding.parameters.length;
     if (considerTypeAnnotations || hasJDK15NullAnnotations) {
       // check if varargs need special treatment:
       boolean passThrough = false;
       if (methodBinding.isVarargs()) {
         int varArgPos = numParamsToCheck - 1;
         // this if-block essentially copied from generateArguments(..):
         if (numParamsToCheck == arguments.length) {
           TypeBinding varArgsType = methodBinding.parameters[varArgPos];
           TypeBinding lastType = arguments[varArgPos].resolvedType;
           if (lastType == TypeBinding.NULL
               || (varArgsType.dimensions() == lastType.dimensions()
                   && lastType.isCompatibleWith(varArgsType)))
             passThrough = true; // pass directly as-is
         }
         if (!passThrough)
           numParamsToCheck--; // with non-passthrough varargs last param is fed from individual
         // args -> don't check
       }
     }
     if (considerTypeAnnotations) {
       for (int i = 0; i < numParamsToCheck; i++) {
         TypeBinding expectedType = methodBinding.parameters[i];
         Expression argument = arguments[i];
         // prefer check based on type annotations:
         int severity = findNullTypeAnnotationMismatch(expectedType, argument.resolvedType);
         if (severity > 0) {
           // immediate reporting:
           currentScope
               .problemReporter()
               .nullityMismatchingTypeAnnotation(
                   argument,
                   argument.resolvedType,
                   expectedType,
                   severity == 1,
                   currentScope.environment());
           // next check flow-based null status against null JDK15-style annotations:
         } else if (hasJDK15NullAnnotations
             && methodBinding.parameterNonNullness[i] == Boolean.TRUE) {
           int nullStatus =
               argument.nullStatus(
                   flowInfo,
                   flowContext); // slight loss of precision: should also use the null info from
           // the receiver.
           if (nullStatus != FlowInfo.NON_NULL) // if required non-null is not provided
           flowContext.recordNullityMismatch(
                 currentScope, argument, argument.resolvedType, expectedType, nullStatus);
         }
       }
     } else if (hasJDK15NullAnnotations) {
       for (int i = 0; i < numParamsToCheck; i++) {
         if (methodBinding.parameterNonNullness[i] == Boolean.TRUE) {
           TypeBinding expectedType = methodBinding.parameters[i];
           Expression argument = arguments[i];
           int nullStatus =
               argument.nullStatus(
                   flowInfo,
                   flowContext); // slight loss of precision: should also use the null info from
           // the receiver.
           if (nullStatus != FlowInfo.NON_NULL) // if required non-null is not provided
           flowContext.recordNullityMismatch(
                 currentScope, argument, argument.resolvedType, expectedType, nullStatus);
         }
       }
     }
   }
 }
Пример #6
0
  /** Generate invocation arguments, considering varargs methods */
  public void generateArguments(
      MethodBinding binding,
      Expression[] arguments,
      BlockScope currentScope,
      CodeStream codeStream) {
    if (binding.isVarargs()) {
      // 5 possibilities exist for a call to the vararg method foo(int i, int ... value) :
      //      foo(1), foo(1, null), foo(1, 2), foo(1, 2, 3, 4) & foo(1, new int[] {1, 2})
      TypeBinding[] params = binding.parameters;
      int paramLength = params.length;
      int varArgIndex = paramLength - 1;
      for (int i = 0; i < varArgIndex; i++) {
        arguments[i].generateCode(currentScope, codeStream, true);
      }
      ArrayBinding varArgsType =
          (ArrayBinding) params[varArgIndex]; // parameterType has to be an array type
      ArrayBinding codeGenVarArgsType = (ArrayBinding) binding.parameters[varArgIndex].erasure();
      int elementsTypeID = varArgsType.elementsType().id;
      int argLength = arguments == null ? 0 : arguments.length;

      if (argLength > paramLength) {
        // right number but not directly compatible or too many arguments - wrap extra into array
        // called with (argLength - lastIndex) elements : foo(1, 2) or foo(1, 2, 3, 4)
        // need to gen elements into an array, then gen each remaining element into created array
        codeStream.generateInlinedValue(argLength - varArgIndex);
        codeStream.newArray(null, codeGenVarArgsType); // create a mono-dimensional array
        for (int i = varArgIndex; i < argLength; i++) {
          codeStream.dup();
          codeStream.generateInlinedValue(i - varArgIndex);
          arguments[i].generateCode(currentScope, codeStream, true);
          codeStream.arrayAtPut(elementsTypeID, false);
        }
      } else if (argLength == paramLength) {
        // right number of arguments - could be inexact - pass argument as is
        TypeBinding lastType = arguments[varArgIndex].resolvedType;
        if (lastType == TypeBinding.NULL
            || (varArgsType.dimensions() == lastType.dimensions()
                && lastType.isCompatibleWith(varArgsType))) {
          // foo(1, new int[]{2, 3}) or foo(1, null) --> last arg is passed as-is
          arguments[varArgIndex].generateCode(currentScope, codeStream, true);
        } else {
          // right number but not directly compatible or too many arguments - wrap extra into array
          // need to gen elements into an array, then gen each remaining element into created array
          codeStream.generateInlinedValue(1);
          codeStream.newArray(null, codeGenVarArgsType); // create a mono-dimensional array
          codeStream.dup();
          codeStream.generateInlinedValue(0);
          arguments[varArgIndex].generateCode(currentScope, codeStream, true);
          codeStream.arrayAtPut(elementsTypeID, false);
        }
      } else { // not enough arguments - pass extra empty array
        // scenario: foo(1) --> foo(1, new int[0])
        // generate code for an empty array of parameterType
        codeStream.generateInlinedValue(0);
        codeStream.newArray(null, codeGenVarArgsType); // create a mono-dimensional array
      }
    } else if (arguments != null) { // standard generation for method arguments
      for (int i = 0, max = arguments.length; i < max; i++)
        arguments[i].generateCode(currentScope, codeStream, true);
    }
  }
  public TypeBinding resolveType(BlockScope scope) {

    // Build an array type reference using the current dimensions
    // The parser does not check for the fact that dimension may be null
    // only at the -end- like new int [4][][]. The parser allows new int[][4][]
    // so this must be checked here......(this comes from a reduction to LL1 grammar)

    TypeBinding referenceType = type.resolveType(scope, true /* check bounds*/);

    // will check for null after dimensions are checked
    constant = Constant.NotAConstant;
    if (referenceType == VoidBinding) {
      scope.problemReporter().cannotAllocateVoidArray(this);
      referenceType = null;
    }

    // check the validity of the dimension syntax (and test for all null dimensions)
    int explicitDimIndex = -1;
    loop:
    for (int i = dimensions.length; --i >= 0; ) {
      if (dimensions[i] != null) {
        if (explicitDimIndex < 0) explicitDimIndex = i;
      } else if (explicitDimIndex > 0) {
        // should not have an empty dimension before an non-empty one
        scope.problemReporter().incorrectLocationForNonEmptyDimension(this, explicitDimIndex);
        break loop;
      }
    }

    // explicitDimIndex < 0 says if all dimensions are nulled
    // when an initializer is given, no dimension must be specified
    if (initializer == null) {
      if (explicitDimIndex < 0) {
        scope.problemReporter().mustDefineDimensionsOrInitializer(this);
      }
      // allow new List<?>[5] - only check for generic array when no initializer, since also checked
      // inside initializer resolution
      if (referenceType != null && !referenceType.isReifiable()) {
        scope.problemReporter().illegalGenericArray(referenceType, this);
      }
    } else if (explicitDimIndex >= 0) {
      scope.problemReporter().cannotDefineDimensionsAndInitializer(this);
    }

    // dimensions resolution
    for (int i = 0; i <= explicitDimIndex; i++) {
      if (dimensions[i] != null) {
        TypeBinding dimensionType = dimensions[i].resolveTypeExpecting(scope, IntBinding);
        if (dimensionType != null) {
          dimensions[i].computeConversion(scope, IntBinding, dimensionType);
        }
      }
    }

    // building the array binding
    if (referenceType != null) {
      if (dimensions.length > 255) {
        scope.problemReporter().tooManyDimensions(this);
      }
      this.resolvedType = scope.createArrayType(referenceType, dimensions.length);

      // check the initializer
      if (initializer != null) {
        if ((initializer.resolveTypeExpecting(scope, this.resolvedType)) != null)
          initializer.binding = (ArrayBinding) this.resolvedType;
      }
    }
    return this.resolvedType;
  }
Пример #8
0
  public TypeBinding resolveTypeExpecting(BlockScope scope, TypeBinding expectedType) {
    // Array initializers can only occur on the right hand side of an assignment
    // expression, therefore the expected type contains the valid information
    // concerning the type that must be enforced by the elements of the array initializer.

    // this method is recursive... (the test on isArrayType is the stop case)

    this.constant = Constant.NotAConstant;

    if (expectedType instanceof ArrayBinding) {
      // allow new List<?>[5]
      if ((this.bits & IsAnnotationDefaultValue)
          == 0) { // annotation default value need only to be commensurate JLS9.7
        // allow new List<?>[5] - only check for generic array when no initializer, since also
        // checked inside initializer resolution
        TypeBinding leafComponentType = expectedType.leafComponentType();
        if (!leafComponentType.isReifiable()) {
          scope.problemReporter().illegalGenericArray(leafComponentType, this);
        }
      }
      this.resolvedType = this.binding = (ArrayBinding) expectedType;
      if (this.expressions == null) return this.binding;
      TypeBinding elementType = this.binding.elementsType();
      for (int i = 0, length = this.expressions.length; i < length; i++) {
        Expression expression = this.expressions[i];
        expression.setExpectedType(elementType);
        TypeBinding expressionType =
            expression instanceof ArrayInitializer
                ? expression.resolveTypeExpecting(scope, elementType)
                : expression.resolveType(scope);
        if (expressionType == null) continue;

        // Compile-time conversion required?
        if (elementType
            != expressionType) // must call before computeConversion() and typeMismatchError()
        scope.compilationUnitScope().recordTypeConversion(elementType, expressionType);

        if (expression.isConstantValueOfTypeAssignableToType(expressionType, elementType)
            || expressionType.isCompatibleWith(elementType)) {
          expression.computeConversion(scope, elementType, expressionType);
        } else if (scope.isBoxingCompatibleWith(expressionType, elementType)
            || (expressionType.isBaseType() // narrowing then boxing ?
                && scope.compilerOptions().sourceLevel >= ClassFileConstants.JDK1_5 // autoboxing
                && !elementType.isBaseType()
                && expression.isConstantValueOfTypeAssignableToType(
                    expressionType, scope.environment().computeBoxingType(elementType)))) {
          expression.computeConversion(scope, elementType, expressionType);
        } else {
          scope.problemReporter().typeMismatchError(expressionType, elementType, expression, null);
        }
      }
      return this.binding;
    }

    // infer initializer type for error reporting based on first element
    TypeBinding leafElementType = null;
    int dim = 1;
    if (this.expressions == null) {
      leafElementType = scope.getJavaLangObject();
    } else {
      Expression expression = this.expressions[0];
      while (expression != null && expression instanceof ArrayInitializer) {
        dim++;
        Expression[] subExprs = ((ArrayInitializer) expression).expressions;
        if (subExprs == null) {
          leafElementType = scope.getJavaLangObject();
          expression = null;
          break;
        }
        expression = ((ArrayInitializer) expression).expressions[0];
      }
      if (expression != null) {
        leafElementType = expression.resolveType(scope);
      }
      // fault-tolerance - resolve other expressions as well
      for (int i = 1, length = this.expressions.length; i < length; i++) {
        expression = this.expressions[i];
        if (expression != null) {
          expression.resolveType(scope);
        }
      }
    }
    if (leafElementType != null) {
      this.resolvedType = scope.createArrayType(leafElementType, dim);
      if (expectedType != null)
        scope.problemReporter().typeMismatchError(this.resolvedType, expectedType, this, null);
    }
    return null;
  }
Пример #9
0
  public TypeBinding resolveType(BlockScope scope) {

    this.constant = Constant.NotAConstant;
    if ((this.targetType = this.type.resolveType(scope, true /* check bounds*/)) == null)
      return null;

    /* https://bugs.eclipse.org/bugs/show_bug.cgi?id=320463
      https://bugs.eclipse.org/bugs/show_bug.cgi?id=312076
      JLS3 15.8.2 forbids the type named in the class literal expression from being a parameterized type.
      And the grammar in 18.1 disallows (where X and Y are some concrete types) constructs of the form
      Outer<X>.class, Outer<X>.Inner.class, Outer.Inner<X>.class, Outer<X>.Inner<Y>.class etc.
      Corollary wise, we should resolve the type of the class literal expression to be a raw type as
      class literals exist only for the raw underlying type.
    */
    LookupEnvironment environment = scope.environment();
    this.targetType =
        environment.convertToRawType(
            this.targetType, true /* force conversion of enclosing types*/);

    if (this.targetType.isArrayType()) {
      ArrayBinding arrayBinding = (ArrayBinding) this.targetType;
      TypeBinding leafComponentType = arrayBinding.leafComponentType;
      if (leafComponentType == TypeBinding.VOID) {
        scope.problemReporter().cannotAllocateVoidArray(this);
        return null;
      } else if (leafComponentType.isTypeVariable()) {
        scope
            .problemReporter()
            .illegalClassLiteralForTypeVariable((TypeVariableBinding) leafComponentType, this);
      }
    } else if (this.targetType.isTypeVariable()) {
      scope
          .problemReporter()
          .illegalClassLiteralForTypeVariable((TypeVariableBinding) this.targetType, this);
    }
    // {ObjectTeams: do we need a RoleClassLiteralAccess?
    if (this.targetType instanceof ReferenceBinding) {
      ReferenceBinding targetRef = (ReferenceBinding) this.targetType;
      if (targetRef.isRole()) {
        if (this.verbatim) {
          this.targetType =
              RoleTypeCreator.maybeWrapUnqualifiedRoleType(scope, this.targetType, this);
        } else {
          SourceTypeBinding site = scope.enclosingSourceType();
          if (scope.methodScope().isStatic // role class literal needs team instance
              && !site.isRole() // static role method are OK.
              && !RoleTypeBinding.isRoleWithExplicitAnchor(this.targetType)) // t.R.class?
          {
            scope.problemReporter().roleClassLiteralLacksTeamInstance(this, targetRef);
            return null;
          }
          ReferenceBinding teamBinding;
          if (RoleTypeBinding.isRoleWithExplicitAnchor(targetRef))
            teamBinding = targetRef.enclosingType();
          else teamBinding = TeamModel.findEnclosingTeamContainingRole(site, targetRef);
          if (teamBinding == null)
            scope.problemReporter().externalizedRoleClassLiteral(this, targetRef);
          else {
            TypeBinding methodType =
                RoleClassLiteralAccess.ensureGetClassMethod(
                    teamBinding.getTeamModel(),
                    targetRef.roleModel); // not affected by visibility check (for resilience)
            this.roleClassLiteralAccess = new RoleClassLiteralAccess(this, methodType);
            this.resolvedType = this.roleClassLiteralAccess.resolveType(scope);
          }
          return this.resolvedType;
        }
      }
    }
    // SH}
    ReferenceBinding classType = scope.getJavaLangClass();
    // https://bugs.eclipse.org/bugs/show_bug.cgi?id=328689
    if (scope.compilerOptions().sourceLevel >= ClassFileConstants.JDK1_5) {
      // Integer.class --> Class<Integer>, perform boxing of base types (int.class -->
      // Class<Integer>)
      TypeBinding boxedType = null;
      if (this.targetType.id == T_void) {
        boxedType = environment.getResolvedType(JAVA_LANG_VOID, scope);
      } else {
        boxedType = scope.boxing(this.targetType);
      }
      if (environment.usesNullTypeAnnotations())
        boxedType =
            environment.createAnnotatedType(
                boxedType, new AnnotationBinding[] {environment.getNonNullAnnotation()});
      this.resolvedType =
          environment.createParameterizedType(
              classType, new TypeBinding[] {boxedType}, null /*not a member*/);
    } else {
      this.resolvedType = classType;
    }
    return this.resolvedType;
  }