Пример #1
0
    @Override
    protected void map(LongWritable key, Text value, Context context)
        throws IOException, InterruptedException {
      items = value.toString().split(fieldDelimRegex);
      outKey.initialize();
      outVal.initialize();
      int initValue = 0;
      for (int i = 0; i < quantityAttr; ++i) {
        outKey.append(items[i]);
      }

      if (isAggrFileSplit) {
        if (items.length >= quantityAttr) {
          // existing aggregation
          outVal.add(
              Integer.parseInt(items[quantityAttr]), Integer.parseInt(items[quantityAttr + 1]));
        } else {
          // first aggregation
          outVal.add(initValue, initValue);
        }
      } else {
        outVal.add((int) 1, Integer.parseInt(items[quantityAttr]));
      }
      context.write(outKey, outVal);
    }
Пример #2
0
    /* (non-Javadoc)
     * @see org.apache.hadoop.mapreduce.Mapper#map(KEYIN, VALUEIN, org.apache.hadoop.mapreduce.Mapper.Context)
     */
    @Override
    protected void map(LongWritable key, Text value, Context context)
        throws IOException, InterruptedException {
      items = value.toString().split(fieldDelimRegex);
      outKey.initialize();
      outVal.initialize();
      if (classCondtionWeighted) {
        trainEntityId = items[2];
        testEntityId = items[0];
        rank = Integer.parseInt(items[3]);
        trainClassAttr = items[4];
        trainingFeaturePostProb = Double.parseDouble(items[5]);
        if (isValidationMode) {
          // validation mode
          testClassAttr = items[1];
          outKey.add(testEntityId, testClassAttr, rank);
        } else {
          // prediction mode
          outKey.add(testEntityId, rank);
        }
        outVal.add(trainEntityId, rank, trainClassAttr, trainingFeaturePostProb);
      } else {
        int index = 0;
        trainEntityId = items[index++];
        testEntityId = items[index++];
        rank = Integer.parseInt(items[index++]);
        trainClassAttr = items[index++];
        if (isValidationMode) {
          // validation mode
          testClassAttr = items[index++];
        }
        outVal.add(trainEntityId, rank, trainClassAttr);

        // for linear regression add numeric input field
        if (isLinearRegression) {
          trainRegrNumFld = items[index++];
          outVal.add(trainRegrNumFld);

          testRegrNumFld = items[index++];
          if (isValidationMode) {
            outKey.add(testEntityId, testClassAttr, testRegrNumFld, rank);
          } else {
            outKey.add(testEntityId, testRegrNumFld, rank);
          }
          outKey.add(testRegrNumFld);
        } else {
          if (isValidationMode) {
            outKey.add(testEntityId, testClassAttr, rank);
          } else {
            outKey.add(testEntityId, rank);
          }
        }
      }
      context.write(outKey, outVal);
    }
    /* (non-Javadoc)
     * @see org.apache.hadoop.mapreduce.Mapper#map(KEYIN, VALUEIN, org.apache.hadoop.mapreduce.Mapper.Context)
     */
    @Override
    protected void map(LongWritable key, Text value, Context context)
        throws IOException, InterruptedException {
      String[] items = value.toString().split(fieldDelim);
      eventType = Integer.parseInt(items[2]);
      timeStamp = Long.parseLong(items[3]);

      // user ID, item ID, event
      keyOut.initialize();
      keyOut.add(items[0], items[1], eventType);

      valOut.initialize();
      valOut.add(eventType, timeStamp);
      context.write(keyOut, valOut);
    }
Пример #4
0
    /* (non-Javadoc)
     * @see org.apache.hadoop.mapreduce.Mapper#map(KEYIN, VALUEIN, org.apache.hadoop.mapreduce.Mapper.Context)
     */
    @Override
    protected void map(LongWritable key, Text value, Context context)
        throws IOException, InterruptedException {
      String[] items = value.toString().split(fieldDelimRegex);

      srcEntityId = items[0];
      trgEntityId = items[1];
      rank = Integer.parseInt(items[items.length - 1]);

      outKey.initialize();
      if (recordInOutput) {
        // include source and taraget record
        if (recLength == -1) {
          recLength = (items.length - 3) / 2;
          srcRecBeg = 2;
          srcRecEnd = trgRecBeg = 2 + recLength;
          trgRecEnd = trgRecBeg + recLength;
        }
        srcRec = org.chombo.util.Utility.join(items, srcRecBeg, srcRecEnd, fieldDelim);
        trgRec = org.chombo.util.Utility.join(items, trgRecBeg, trgRecEnd, fieldDelim);
        outKey.add(srcEntityId, srcRec, rank);
        outVal.set(trgEntityId + fieldDelim + trgRec + fieldDelim + items[items.length - 1]);
      } else {
        // only target entity id and distance
        outKey.add(srcEntityId, rank);
        outVal.set(trgEntityId + fieldDelim + items[items.length - 1]);
      }
      context.write(outKey, outVal);
    }
Пример #5
0
    /* (non-Javadoc)
     * @see org.apache.hadoop.mapreduce.Mapper#map(KEYIN, VALUEIN, org.apache.hadoop.mapreduce.Mapper.Context)
     */
    @Override
    protected void map(LongWritable key, Text value, Context context)
        throws IOException, InterruptedException {
      String[] items = value.toString().split(fieldDelim);
      String itemID = items[0];
      if (isRatingFileSplit) {
        // user rating
        context.getCounter("Record type count", "Rating").increment(1);

        boolean toInclude = true;
        for (int i = 1; i < items.length; ++i) {
          // all user ratings for this item
          ratings = items[i].split(subFieldDelim);

          // time sensitive recommendation
          toInclude = true;
          if (ratingTimeCutoff > 0) {
            timeStamp = Long.parseLong(ratings[2]);
            toInclude = timeStamp > ratingTimeCutoff;
          }

          // contextual recommendation
          if (userRatingWithContext) {
            ratingContext = ratings[3];
          }

          // check for min input rating threshold
          inputRating = new Integer(ratings[1]);
          toInclude = toInclude && inputRating > minInputRating;

          if (toInclude) {
            // itemID
            keyOut.set(itemID, two);

            // userID, rating
            valOut.initialize();
            if (userRatingWithContext) {
              valOut.add(ratings[0], inputRating, context, two);
            } else {
              valOut.add(ratings[0], inputRating, two);
            }
            context.write(keyOut, valOut);
          }
        }
      } else if (isRatingStatFileSplit) {
        // rating stat
        context.getCounter("Record type count", "Rating stat").increment(1);
        int ratingStdDev = Integer.parseInt(items[STD_DEV_ORD]);
        keyOut.set(itemID, one);
        valOut.initialize();
        valOut.add(ratingStdDev, one);
        context.write(keyOut, valOut);
      } else {
        // item correlation
        context.getCounter("Record type count", "Correlation").increment(1);
        correlation = Integer.parseInt(items[2]);
        correlationLength = Integer.parseInt(items[3]);

        // if correlation is above min threshold
        if (correlation > minCorrelation) {
          // correlation of 1st item
          keyOut.set(items[0], zero);
          valOut.initialize();
          if (linearCorrelation) {
            // other itemID, correlation, intersection length (weight)
            valOut.add(items[1], correlation, correlationLength, zero);
          } else {
            // other itemID, correlation, intersection length (weight)
            valOut.add(items[1], -correlation, correlationLength, zero);
          }
          context.write(keyOut, valOut);

          // correlation of second item
          keyOut.set(items[1], zero);
          valOut.initialize();
          if (linearCorrelation) {
            // other itemID, correlation, intersection length (weight)
            valOut.add(items[0], correlation, correlationLength, zero);
          } else {
            // other itemID, correlation, intersection length (weight)
            valOut.add(items[0], -correlation, correlationLength, zero);
          }
          context.write(keyOut, valOut);
        }
      }
    }