Пример #1
0
  /**
   * Test the reads according to an independently derived context.
   *
   * @param view
   * @param range
   * @param reads
   */
  @Override
  protected void testReadsInContext(
      LocusView view, List<GenomeLoc> range, List<GATKSAMRecord> reads) {
    AllLocusView allLocusView = (AllLocusView) view;

    // TODO: Should skip over loci not in the given range.
    GenomeLoc firstLoc = range.get(0);
    GenomeLoc lastLoc = range.get(range.size() - 1);
    GenomeLoc bounds =
        genomeLocParser.createGenomeLoc(
            firstLoc.getContig(), firstLoc.getStart(), lastLoc.getStop());

    for (int i = bounds.getStart(); i <= bounds.getStop(); i++) {
      GenomeLoc site = genomeLocParser.createGenomeLoc("chr1", i);
      AlignmentContext locusContext = allLocusView.next();
      Assert.assertEquals(locusContext.getLocation(), site, "Locus context location is incorrect");
      int expectedReadsAtSite = 0;

      for (GATKSAMRecord read : reads) {
        if (genomeLocParser.createGenomeLoc(read).containsP(locusContext.getLocation())) {
          Assert.assertTrue(
              locusContext.getReads().contains(read),
              "Target locus context does not contain reads");
          expectedReadsAtSite++;
        }
      }

      Assert.assertEquals(
          locusContext.getReads().size(),
          expectedReadsAtSite,
          "Found wrong number of reads at site");
    }
  }
Пример #2
0
 /**
  * return a deep copy of this collection.
  *
  * @return a new GenomeLocSortedSet, identical to the current GenomeLocSortedSet.
  */
 public GenomeLocSortedSet clone() {
   GenomeLocSortedSet ret = new GenomeLocSortedSet(genomeLocParser);
   for (GenomeLoc loc : this.mArray) {
     // ensure a deep copy
     ret.mArray.add(
         genomeLocParser.createGenomeLoc(loc.getContig(), loc.getStart(), loc.getStop()));
   }
   return ret;
 }
 private GenomeLoc createIntervalAfter(GenomeLoc interval) {
   int contigLimit =
       getToolkit()
           .getSAMFileHeader()
           .getSequenceDictionary()
           .getSequence(interval.getContigIndex())
           .getSequenceLength();
   int start = Math.min(interval.getStop() + 1, contigLimit);
   int stop = Math.min(interval.getStop() + expandInterval, contigLimit);
   return parser.createGenomeLoc(interval.getContig(), interval.getContigIndex(), start, stop);
 }
Пример #4
0
  public Iterable<Shard> createShardsOverIntervals(
      final SAMDataSource readsDataSource,
      final GenomeLocSortedSet intervals,
      final int maxShardSize) {
    List<Shard> shards = new ArrayList<Shard>();

    for (GenomeLoc interval : intervals) {
      while (interval.size() > maxShardSize) {
        shards.add(
            new LocusShard(
                intervals.getGenomeLocParser(),
                readsDataSource,
                Collections.singletonList(
                    intervals
                        .getGenomeLocParser()
                        .createGenomeLoc(
                            interval.getContig(),
                            interval.getStart(),
                            interval.getStart() + maxShardSize - 1)),
                null));
        interval =
            intervals
                .getGenomeLocParser()
                .createGenomeLoc(
                    interval.getContig(), interval.getStart() + maxShardSize, interval.getStop());
      }
      shards.add(
          new LocusShard(
              intervals.getGenomeLocParser(),
              readsDataSource,
              Collections.singletonList(interval),
              null));
    }

    return shards;
  }
Пример #5
0
  private boolean overlapsKnownCNV(VariantContext cnv) {
    if (knownCNVs != null) {
      final GenomeLoc loc =
          getWalker().getToolkit().getGenomeLocParser().createGenomeLoc(cnv, true);
      IntervalTree<GenomeLoc> intervalTree = knownCNVs.get(loc.getContig());

      final Iterator<IntervalTree.Node<GenomeLoc>> nodeIt =
          intervalTree.overlappers(loc.getStart(), loc.getStop());
      while (nodeIt.hasNext()) {
        final double overlapP = loc.reciprocialOverlapFraction(nodeIt.next().getValue());
        if (overlapP > MIN_CNV_OVERLAP) return true;
      }
    }

    return false;
  }
Пример #6
0
  /**
   * Utility routine that prints out process information (including timing) every N records or every
   * M seconds, for N and M set in global variables.
   *
   * <p>Synchronized to ensure that even with multiple threads calling notifyOfProgress we still get
   * one clean stream of meter logs.
   *
   * <p>Note this thread doesn't actually print progress, unless must print is true, but just
   * registers the progress itself. A separate printing daemon periodically polls the meter to print
   * out progress
   *
   * @param loc Current location, can be null if you are at the end of the processing unit
   * @param nTotalRecordsProcessed the total number of records we've processed
   */
  public synchronized void notifyOfProgress(
      final GenomeLoc loc, final long nTotalRecordsProcessed) {
    if (nTotalRecordsProcessed < 0)
      throw new IllegalArgumentException("nTotalRecordsProcessed must be >= 0");

    // weird comparison to ensure that loc == null (in unmapped reads) is keep before maxGenomeLoc
    // == null (on startup)
    this.maxGenomeLoc = loc == null ? loc : (maxGenomeLoc == null ? loc : loc.max(maxGenomeLoc));
    this.nTotalRecordsProcessed = Math.max(this.nTotalRecordsProcessed, nTotalRecordsProcessed);

    // a pretty name for our position
    this.positionMessage =
        maxGenomeLoc == null
            ? "unmapped reads"
            : String.format("%s:%d", maxGenomeLoc.getContig(), maxGenomeLoc.getStart());
  }
  public final Map<String, IntervalTree<GenomeLoc>> createIntervalTreeByContig(
      final IntervalBinding<Feature> intervals) {
    final Map<String, IntervalTree<GenomeLoc>> byContig =
        new HashMap<String, IntervalTree<GenomeLoc>>();

    final List<GenomeLoc> locs = intervals.getIntervals(getToolkit());

    // set up the map from contig -> interval tree
    for (final String contig : getContigNames())
      byContig.put(contig, new IntervalTree<GenomeLoc>());

    for (final GenomeLoc loc : locs) {
      byContig.get(loc.getContig()).put(loc.getStart(), loc.getStop(), loc);
    }

    return byContig;
  }
Пример #8
0
  /**
   * Returns a new GenomeLoc that represents the region between the endpoints of this and that.
   * Requires that this and that GenomeLoc are both mapped.
   */
  @Requires({"that != null", "isUnmapped(this) == isUnmapped(that)"})
  @Ensures("result != null")
  public GenomeLoc endpointSpan(GenomeLoc that) throws ReviewedStingException {
    if (GenomeLoc.isUnmapped(this) || GenomeLoc.isUnmapped(that)) {
      throw new ReviewedStingException("Cannot get endpoint span for unmerged genome locs");
    }

    if (!this.getContig().equals(that.getContig())) {
      throw new ReviewedStingException(
          "Cannot get endpoint span for genome locs on different contigs");
    }

    return new GenomeLoc(
        getContig(),
        this.contigIndex,
        Math.min(getStart(), that.getStart()),
        Math.max(getStop(), that.getStop()));
  }
Пример #9
0
  /**
   * Determines what is the position of the read in relation to the interval. Note: This function
   * uses the UNCLIPPED ENDS of the reads for the comparison.
   *
   * @param read the read
   * @param interval the interval
   * @return the overlap type as described by ReadAndIntervalOverlap enum (see above)
   */
  public static ReadAndIntervalOverlap getReadAndIntervalOverlapType(
      GATKSAMRecord read, GenomeLoc interval) {

    int sStart = read.getSoftStart();
    int sStop = read.getSoftEnd();
    int uStart = read.getUnclippedStart();
    int uStop = read.getUnclippedEnd();

    if (!read.getReferenceName().equals(interval.getContig()))
      return ReadAndIntervalOverlap.NO_OVERLAP_CONTIG;
    else if (uStop < interval.getStart()) return ReadAndIntervalOverlap.NO_OVERLAP_LEFT;
    else if (uStart > interval.getStop()) return ReadAndIntervalOverlap.NO_OVERLAP_RIGHT;
    else if (sStop < interval.getStart()) return ReadAndIntervalOverlap.NO_OVERLAP_HARDCLIPPED_LEFT;
    else if (sStart > interval.getStop())
      return ReadAndIntervalOverlap.NO_OVERLAP_HARDCLIPPED_RIGHT;
    else if ((sStart >= interval.getStart()) && (sStop <= interval.getStop()))
      return ReadAndIntervalOverlap.OVERLAP_CONTAINED;
    else if ((sStart < interval.getStart()) && (sStop > interval.getStop()))
      return ReadAndIntervalOverlap.OVERLAP_LEFT_AND_RIGHT;
    else if ((sStart < interval.getStart())) return ReadAndIntervalOverlap.OVERLAP_LEFT;
    else return ReadAndIntervalOverlap.OVERLAP_RIGHT;
  }
Пример #10
0
  public void writeBeagleOutput(
      VariantContext preferredVC, VariantContext otherVC, boolean isValidationSite, double prior) {
    GenomeLoc currentLoc =
        VariantContextUtils.getLocation(getToolkit().getGenomeLocParser(), preferredVC);
    StringBuffer beagleOut = new StringBuffer();

    String marker = String.format("%s:%d ", currentLoc.getContig(), currentLoc.getStart());
    beagleOut.append(marker);
    if (markers != null)
      markers.append(marker).append("\t").append(Integer.toString(markerCounter++)).append("\t");
    for (Allele allele : preferredVC.getAlleles()) {
      String bglPrintString;
      if (allele.isNoCall() || allele.isNull()) bglPrintString = "-";
      else bglPrintString = allele.getBaseString(); // get rid of * in case of reference allele

      beagleOut.append(String.format("%s ", bglPrintString));
      if (markers != null) markers.append(bglPrintString).append("\t");
    }
    if (markers != null) markers.append("\n");

    GenotypesContext preferredGenotypes = preferredVC.getGenotypes();
    GenotypesContext otherGenotypes = goodSite(otherVC) ? otherVC.getGenotypes() : null;
    for (String sample : samples) {
      boolean isMaleOnChrX = CHECK_IS_MALE_ON_CHR_X && getSample(sample).getGender() == Gender.MALE;

      Genotype genotype;
      boolean isValidation;
      // use sample as key into genotypes structure
      if (preferredGenotypes.containsSample(sample)) {
        genotype = preferredGenotypes.get(sample);
        isValidation = isValidationSite;
      } else if (otherGenotypes != null && otherGenotypes.containsSample(sample)) {
        genotype = otherGenotypes.get(sample);
        isValidation = !isValidationSite;
      } else {
        // there is magically no genotype for this sample.
        throw new StingException(
            "Sample "
                + sample
                + " arose with no genotype in variant or validation VCF. This should never happen.");
      }

      /*
       * Use likelihoods if: is validation, prior is negative; or: is not validation, has genotype key
       */
      double[] log10Likelihoods = null;
      if ((isValidation && prior < 0.0) || genotype.hasLikelihoods()) {
        log10Likelihoods = genotype.getLikelihoods().getAsVector();

        // see if we need to randomly mask out genotype in this position.
        if (GenomeAnalysisEngine.getRandomGenerator().nextDouble() <= insertedNoCallRate) {
          // we are masking out this genotype
          log10Likelihoods =
              isMaleOnChrX ? HAPLOID_FLAT_LOG10_LIKELIHOODS : DIPLOID_FLAT_LOG10_LIKELIHOODS;
        }

        if (isMaleOnChrX) {
          log10Likelihoods[1] = -255; // todo -- warning this is dangerous for multi-allele case
        }
      }
      /** otherwise, use the prior uniformly */
      else if (!isValidation && genotype.isCalled() && !genotype.hasLikelihoods()) {
        // hack to deal with input VCFs with no genotype likelihoods.  Just assume the called
        // genotype
        // is confident.  This is useful for Hapmap and 1KG release VCFs.
        double AA = (1.0 - prior) / 2.0;
        double AB = (1.0 - prior) / 2.0;
        double BB = (1.0 - prior) / 2.0;

        if (genotype.isHomRef()) {
          AA = prior;
        } else if (genotype.isHet()) {
          AB = prior;
        } else if (genotype.isHomVar()) {
          BB = prior;
        }

        log10Likelihoods = MathUtils.toLog10(new double[] {AA, isMaleOnChrX ? 0.0 : AB, BB});
      } else {
        log10Likelihoods =
            isMaleOnChrX ? HAPLOID_FLAT_LOG10_LIKELIHOODS : DIPLOID_FLAT_LOG10_LIKELIHOODS;
      }

      writeSampleLikelihoods(beagleOut, preferredVC, log10Likelihoods);
    }

    beagleWriter.println(beagleOut.toString());
  }
Пример #11
0
  /**
   * Main entry function to calculate genotypes of a given VC with corresponding GL's
   *
   * @param tracker Tracker
   * @param refContext Reference context
   * @param rawContext Raw context
   * @param stratifiedContexts Stratified alignment contexts
   * @param vc Input VC
   * @param model GL calculation model
   * @param inheritAttributesFromInputVC Output VC will contain attributes inherited from input vc
   * @return VC with assigned genotypes
   */
  public VariantCallContext calculateGenotypes(
      final RefMetaDataTracker tracker,
      final ReferenceContext refContext,
      final AlignmentContext rawContext,
      Map<String, AlignmentContext> stratifiedContexts,
      final VariantContext vc,
      final GenotypeLikelihoodsCalculationModel.Model model,
      final boolean inheritAttributesFromInputVC,
      final Map<String, org.broadinstitute.sting.utils.genotyper.PerReadAlleleLikelihoodMap>
          perReadAlleleLikelihoodMap) {

    boolean limitedContext =
        tracker == null || refContext == null || rawContext == null || stratifiedContexts == null;

    // initialize the data for this thread if that hasn't been done yet
    if (afcm.get() == null) {
      afcm.set(AFCalcFactory.createAFCalc(UAC, N, logger));
    }

    // estimate our confidence in a reference call and return
    if (vc.getNSamples() == 0) {
      if (limitedContext) return null;
      return (UAC.OutputMode != OUTPUT_MODE.EMIT_ALL_SITES
          ? estimateReferenceConfidence(vc, stratifiedContexts, getTheta(model), false, 1.0)
          : generateEmptyContext(tracker, refContext, stratifiedContexts, rawContext));
    }

    AFCalcResult AFresult = afcm.get().getLog10PNonRef(vc, getAlleleFrequencyPriors(model));

    // is the most likely frequency conformation AC=0 for all alternate alleles?
    boolean bestGuessIsRef = true;

    // determine which alternate alleles have AF>0
    final List<Allele> myAlleles = new ArrayList<Allele>(vc.getAlleles().size());
    final List<Integer> alleleCountsofMLE = new ArrayList<Integer>(vc.getAlleles().size());
    myAlleles.add(vc.getReference());
    for (int i = 0; i < AFresult.getAllelesUsedInGenotyping().size(); i++) {
      final Allele alternateAllele = AFresult.getAllelesUsedInGenotyping().get(i);
      if (alternateAllele.isReference()) continue;

      // we are non-ref if the probability of being non-ref > the emit confidence.
      // the emit confidence is phred-scaled, say 30 => 10^-3.
      // the posterior AF > 0 is log10: -5 => 10^-5
      // we are non-ref if 10^-5 < 10^-3 => -5 < -3
      final boolean isNonRef =
          AFresult.isPolymorphic(alternateAllele, UAC.STANDARD_CONFIDENCE_FOR_EMITTING / -10.0);

      // if the most likely AC is not 0, then this is a good alternate allele to use
      if (isNonRef) {
        myAlleles.add(alternateAllele);
        alleleCountsofMLE.add(AFresult.getAlleleCountAtMLE(alternateAllele));
        bestGuessIsRef = false;
      }
      // if in GENOTYPE_GIVEN_ALLELES mode, we still want to allow the use of a poor allele
      else if (UAC.GenotypingMode
          == GenotypeLikelihoodsCalculationModel.GENOTYPING_MODE.GENOTYPE_GIVEN_ALLELES) {
        myAlleles.add(alternateAllele);
        alleleCountsofMLE.add(AFresult.getAlleleCountAtMLE(alternateAllele));
      }
    }

    final double PoFGT0 = Math.pow(10, AFresult.getLog10PosteriorOfAFGT0());

    // note the math.abs is necessary because -10 * 0.0 => -0.0 which isn't nice
    final double phredScaledConfidence =
        Math.abs(
            !bestGuessIsRef
                    || UAC.GenotypingMode
                        == GenotypeLikelihoodsCalculationModel.GENOTYPING_MODE
                            .GENOTYPE_GIVEN_ALLELES
                ? -10 * AFresult.getLog10PosteriorOfAFEq0()
                : -10 * AFresult.getLog10PosteriorOfAFGT0());

    // return a null call if we don't pass the confidence cutoff or the most likely allele frequency
    // is zero
    if (UAC.OutputMode != OUTPUT_MODE.EMIT_ALL_SITES
        && !passesEmitThreshold(phredScaledConfidence, bestGuessIsRef)) {
      // technically, at this point our confidence in a reference call isn't accurately estimated
      //  because it didn't take into account samples with no data, so let's get a better estimate
      return limitedContext
          ? null
          : estimateReferenceConfidence(vc, stratifiedContexts, getTheta(model), true, PoFGT0);
    }

    // start constructing the resulting VC
    final GenomeLoc loc = genomeLocParser.createGenomeLoc(vc);
    final VariantContextBuilder builder =
        new VariantContextBuilder(
            "UG_call", loc.getContig(), loc.getStart(), loc.getStop(), myAlleles);
    builder.log10PError(phredScaledConfidence / -10.0);
    if (!passesCallThreshold(phredScaledConfidence)) builder.filters(filter);

    // create the genotypes
    final GenotypesContext genotypes = afcm.get().subsetAlleles(vc, myAlleles, true, ploidy);
    builder.genotypes(genotypes);

    // print out stats if we have a writer
    if (verboseWriter != null && !limitedContext)
      printVerboseData(refContext.getLocus().toString(), vc, PoFGT0, phredScaledConfidence, model);

    // *** note that calculating strand bias involves overwriting data structures, so we do that
    // last
    final HashMap<String, Object> attributes = new HashMap<String, Object>();

    // inherit attributed from input vc if requested
    if (inheritAttributesFromInputVC) attributes.putAll(vc.getAttributes());
    // if the site was downsampled, record that fact
    if (!limitedContext && rawContext.hasPileupBeenDownsampled())
      attributes.put(VCFConstants.DOWNSAMPLED_KEY, true);

    if (UAC.ANNOTATE_NUMBER_OF_ALLELES_DISCOVERED)
      attributes.put(NUMBER_OF_DISCOVERED_ALLELES_KEY, vc.getAlternateAlleles().size());

    // add the MLE AC and AF annotations
    if (alleleCountsofMLE.size() > 0) {
      attributes.put(VCFConstants.MLE_ALLELE_COUNT_KEY, alleleCountsofMLE);
      final int AN = builder.make().getCalledChrCount();
      final ArrayList<Double> MLEfrequencies = new ArrayList<Double>(alleleCountsofMLE.size());
      // the MLEAC is allowed to be larger than the AN (e.g. in the case of all PLs being 0, the GT
      // is ./. but the exact model may arbitrarily choose an AC>1)
      for (int AC : alleleCountsofMLE) MLEfrequencies.add(Math.min(1.0, (double) AC / (double) AN));
      attributes.put(VCFConstants.MLE_ALLELE_FREQUENCY_KEY, MLEfrequencies);
    }

    if (UAC.COMPUTE_SLOD && !limitedContext && !bestGuessIsRef) {
      // final boolean DEBUG_SLOD = false;

      // the overall lod
      // double overallLog10PofNull = AFresult.log10AlleleFrequencyPosteriors[0];
      double overallLog10PofF = AFresult.getLog10LikelihoodOfAFGT0();
      // if ( DEBUG_SLOD ) System.out.println("overallLog10PofF=" + overallLog10PofF);

      List<Allele> allAllelesToUse = builder.make().getAlleles();

      // the forward lod
      VariantContext vcForward =
          calculateLikelihoods(
              tracker,
              refContext,
              stratifiedContexts,
              AlignmentContextUtils.ReadOrientation.FORWARD,
              allAllelesToUse,
              false,
              model,
              perReadAlleleLikelihoodMap);
      AFresult = afcm.get().getLog10PNonRef(vcForward, getAlleleFrequencyPriors(model));
      // double[] normalizedLog10Posteriors =
      // MathUtils.normalizeFromLog10(AFresult.log10AlleleFrequencyPosteriors, true);
      double forwardLog10PofNull = AFresult.getLog10LikelihoodOfAFEq0();
      double forwardLog10PofF = AFresult.getLog10LikelihoodOfAFGT0();
      // if ( DEBUG_SLOD ) System.out.println("forwardLog10PofNull=" + forwardLog10PofNull + ",
      // forwardLog10PofF=" + forwardLog10PofF);

      // the reverse lod
      VariantContext vcReverse =
          calculateLikelihoods(
              tracker,
              refContext,
              stratifiedContexts,
              AlignmentContextUtils.ReadOrientation.REVERSE,
              allAllelesToUse,
              false,
              model,
              perReadAlleleLikelihoodMap);
      AFresult = afcm.get().getLog10PNonRef(vcReverse, getAlleleFrequencyPriors(model));
      // normalizedLog10Posteriors =
      // MathUtils.normalizeFromLog10(AFresult.log10AlleleFrequencyPosteriors, true);
      double reverseLog10PofNull = AFresult.getLog10LikelihoodOfAFEq0();
      double reverseLog10PofF = AFresult.getLog10LikelihoodOfAFGT0();
      // if ( DEBUG_SLOD ) System.out.println("reverseLog10PofNull=" + reverseLog10PofNull + ",
      // reverseLog10PofF=" + reverseLog10PofF);

      double forwardLod = forwardLog10PofF + reverseLog10PofNull - overallLog10PofF;
      double reverseLod = reverseLog10PofF + forwardLog10PofNull - overallLog10PofF;
      // if ( DEBUG_SLOD ) System.out.println("forward lod=" + forwardLod + ", reverse lod=" +
      // reverseLod);

      // strand score is max bias between forward and reverse strands
      double strandScore = Math.max(forwardLod, reverseLod);
      // rescale by a factor of 10
      strandScore *= 10.0;
      // logger.debug(String.format("SLOD=%f", strandScore));

      if (!Double.isNaN(strandScore)) attributes.put("SB", strandScore);
    }

    // finish constructing the resulting VC
    builder.attributes(attributes);
    VariantContext vcCall = builder.make();

    // if we are subsetting alleles (either because there were too many or because some were not
    // polymorphic)
    // then we may need to trim the alleles (because the original VariantContext may have had to pad
    // at the end).
    if (myAlleles.size() != vc.getAlleles().size()
        && !limitedContext) // limitedContext callers need to handle allele trimming on their own to
                            // keep their perReadAlleleLikelihoodMap alleles in sync
    vcCall = VariantContextUtils.reverseTrimAlleles(vcCall);

    if (annotationEngine != null
        && !limitedContext) { // limitedContext callers need to handle annotations on their own by
                              // calling their own annotationEngine
      // Note: we want to use the *unfiltered* and *unBAQed* context for the annotations
      final ReadBackedPileup pileup = rawContext.getBasePileup();
      stratifiedContexts = AlignmentContextUtils.splitContextBySampleName(pileup);

      vcCall =
          annotationEngine.annotateContext(
              tracker, refContext, stratifiedContexts, vcCall, perReadAlleleLikelihoodMap);
    }

    return new VariantCallContext(vcCall, confidentlyCalled(phredScaledConfidence, PoFGT0));
  }
  /**
   * Merges VariantContexts into a single hybrid. Takes genotypes for common samples in priority
   * order, if provided. If uniqifySamples is true, the priority order is ignored and names are
   * created by concatenating the VC name with the sample name
   *
   * @param genomeLocParser loc parser
   * @param unsortedVCs collection of unsorted VCs
   * @param priorityListOfVCs priority list detailing the order in which we should grab the VCs
   * @param filteredRecordMergeType merge type for filtered records
   * @param genotypeMergeOptions merge option for genotypes
   * @param annotateOrigin should we annotate the set it came from?
   * @param printMessages should we print messages?
   * @param setKey the key name of the set
   * @param filteredAreUncalled are filtered records uncalled?
   * @param mergeInfoWithMaxAC should we merge in info from the VC with maximum allele count?
   * @return new VariantContext representing the merge of unsortedVCs
   */
  public static VariantContext simpleMerge(
      final GenomeLocParser genomeLocParser,
      final Collection<VariantContext> unsortedVCs,
      final List<String> priorityListOfVCs,
      final FilteredRecordMergeType filteredRecordMergeType,
      final GenotypeMergeType genotypeMergeOptions,
      final boolean annotateOrigin,
      final boolean printMessages,
      final String setKey,
      final boolean filteredAreUncalled,
      final boolean mergeInfoWithMaxAC) {
    if (unsortedVCs == null || unsortedVCs.size() == 0) return null;

    if (annotateOrigin && priorityListOfVCs == null)
      throw new IllegalArgumentException(
          "Cannot merge calls and annotate their origins without a complete priority list of VariantContexts");

    if (genotypeMergeOptions == GenotypeMergeType.REQUIRE_UNIQUE)
      verifyUniqueSampleNames(unsortedVCs);

    List<VariantContext> prepaddedVCs =
        sortVariantContextsByPriority(unsortedVCs, priorityListOfVCs, genotypeMergeOptions);
    // Make sure all variant contexts are padded with reference base in case of indels if necessary
    List<VariantContext> VCs = new ArrayList<VariantContext>();

    for (VariantContext vc : prepaddedVCs) {
      // also a reasonable place to remove filtered calls, if needed
      if (!filteredAreUncalled || vc.isNotFiltered())
        VCs.add(createVariantContextWithPaddedAlleles(vc, false));
    }
    if (VCs.size() == 0) // everything is filtered out and we're filteredAreUncalled
    return null;

    // establish the baseline info from the first VC
    final VariantContext first = VCs.get(0);
    final String name = first.getSource();
    final Allele refAllele = determineReferenceAllele(VCs);

    final Set<Allele> alleles = new LinkedHashSet<Allele>();
    final Set<String> filters = new TreeSet<String>();
    final Map<String, Object> attributes = new TreeMap<String, Object>();
    final Set<String> inconsistentAttributes = new HashSet<String>();
    final Set<String> variantSources =
        new HashSet<
            String>(); // contains the set of sources we found in our set of VCs that are variant
    final Set<String> rsIDs = new LinkedHashSet<String>(1); // most of the time there's one id

    GenomeLoc loc = getLocation(genomeLocParser, first);
    int depth = 0;
    int maxAC = -1;
    final Map<String, Object> attributesWithMaxAC = new TreeMap<String, Object>();
    double log10PError = 1;
    VariantContext vcWithMaxAC = null;
    GenotypesContext genotypes = GenotypesContext.create();

    // counting the number of filtered and variant VCs
    int nFiltered = 0;

    boolean remapped = false;

    // cycle through and add info from the other VCs, making sure the loc/reference matches

    for (VariantContext vc : VCs) {
      if (loc.getStart() != vc.getStart()) // || !first.getReference().equals(vc.getReference()) )
      throw new ReviewedStingException(
            "BUG: attempting to merge VariantContexts with different start sites: first="
                + first.toString()
                + " second="
                + vc.toString());

      if (getLocation(genomeLocParser, vc).size() > loc.size())
        loc = getLocation(genomeLocParser, vc); // get the longest location

      nFiltered += vc.isFiltered() ? 1 : 0;
      if (vc.isVariant()) variantSources.add(vc.getSource());

      AlleleMapper alleleMapping = resolveIncompatibleAlleles(refAllele, vc, alleles);
      remapped = remapped || alleleMapping.needsRemapping();

      alleles.addAll(alleleMapping.values());

      mergeGenotypes(
          genotypes, vc, alleleMapping, genotypeMergeOptions == GenotypeMergeType.UNIQUIFY);

      log10PError = Math.min(log10PError, vc.isVariant() ? vc.getLog10PError() : 1);

      filters.addAll(vc.getFilters());

      //
      // add attributes
      //
      // special case DP (add it up) and ID (just preserve it)
      //
      if (vc.hasAttribute(VCFConstants.DEPTH_KEY))
        depth += vc.getAttributeAsInt(VCFConstants.DEPTH_KEY, 0);
      if (vc.hasID()) rsIDs.add(vc.getID());
      if (mergeInfoWithMaxAC && vc.hasAttribute(VCFConstants.ALLELE_COUNT_KEY)) {
        String rawAlleleCounts = vc.getAttributeAsString(VCFConstants.ALLELE_COUNT_KEY, null);
        // lets see if the string contains a , separator
        if (rawAlleleCounts.contains(VCFConstants.INFO_FIELD_ARRAY_SEPARATOR)) {
          List<String> alleleCountArray =
              Arrays.asList(
                  rawAlleleCounts
                      .substring(1, rawAlleleCounts.length() - 1)
                      .split(VCFConstants.INFO_FIELD_ARRAY_SEPARATOR));
          for (String alleleCount : alleleCountArray) {
            final int ac = Integer.valueOf(alleleCount.trim());
            if (ac > maxAC) {
              maxAC = ac;
              vcWithMaxAC = vc;
            }
          }
        } else {
          final int ac = Integer.valueOf(rawAlleleCounts);
          if (ac > maxAC) {
            maxAC = ac;
            vcWithMaxAC = vc;
          }
        }
      }

      for (Map.Entry<String, Object> p : vc.getAttributes().entrySet()) {
        String key = p.getKey();
        // if we don't like the key already, don't go anywhere
        if (!inconsistentAttributes.contains(key)) {
          boolean alreadyFound = attributes.containsKey(key);
          Object boundValue = attributes.get(key);
          boolean boundIsMissingValue =
              alreadyFound && boundValue.equals(VCFConstants.MISSING_VALUE_v4);

          if (alreadyFound && !boundValue.equals(p.getValue()) && !boundIsMissingValue) {
            // we found the value but we're inconsistent, put it in the exclude list
            // System.out.printf("Inconsistent INFO values: %s => %s and %s%n", key, boundValue,
            // p.getValue());
            inconsistentAttributes.add(key);
            attributes.remove(key);
          } else if (!alreadyFound || boundIsMissingValue) { // no value
            // if ( vc != first ) System.out.printf("Adding key %s => %s%n", p.getKey(),
            // p.getValue());
            attributes.put(key, p.getValue());
          }
        }
      }
    }

    // if we have more alternate alleles in the merged VC than in one or more of the
    // original VCs, we need to strip out the GL/PLs (because they are no longer accurate), as well
    // as allele-dependent attributes like AC,AF
    for (VariantContext vc : VCs) {
      if (vc.alleles.size() == 1) continue;
      if (hasPLIncompatibleAlleles(alleles, vc.alleles)) {
        if (!genotypes.isEmpty())
          logger.warn(
              String.format(
                  "Stripping PLs at %s due incompatible alleles merged=%s vs. single=%s",
                  genomeLocParser.createGenomeLoc(vc), alleles, vc.alleles));
        genotypes = stripPLs(genotypes);
        // this will remove stale AC,AF attributed from vc
        calculateChromosomeCounts(vc, attributes, true);
        break;
      }
    }

    // take the VC with the maxAC and pull the attributes into a modifiable map
    if (mergeInfoWithMaxAC && vcWithMaxAC != null) {
      attributesWithMaxAC.putAll(vcWithMaxAC.getAttributes());
    }

    // if at least one record was unfiltered and we want a union, clear all of the filters
    if ((filteredRecordMergeType == FilteredRecordMergeType.KEEP_IF_ANY_UNFILTERED
            && nFiltered != VCs.size())
        || filteredRecordMergeType == FilteredRecordMergeType.KEEP_UNCONDITIONAL) filters.clear();

    if (annotateOrigin) { // we care about where the call came from
      String setValue;
      if (nFiltered == 0
          && variantSources.size() == priorityListOfVCs.size()) // nothing was unfiltered
      setValue = MERGE_INTERSECTION;
      else if (nFiltered == VCs.size()) // everything was filtered out
      setValue = MERGE_FILTER_IN_ALL;
      else if (variantSources.isEmpty()) // everyone was reference
      setValue = MERGE_REF_IN_ALL;
      else {
        LinkedHashSet<String> s = new LinkedHashSet<String>();
        for (VariantContext vc : VCs)
          if (vc.isVariant())
            s.add(vc.isFiltered() ? MERGE_FILTER_PREFIX + vc.getSource() : vc.getSource());
        setValue = Utils.join("-", s);
      }

      if (setKey != null) {
        attributes.put(setKey, setValue);
        if (mergeInfoWithMaxAC && vcWithMaxAC != null) {
          attributesWithMaxAC.put(setKey, vcWithMaxAC.getSource());
        }
      }
    }

    if (depth > 0) attributes.put(VCFConstants.DEPTH_KEY, String.valueOf(depth));

    final String ID = rsIDs.isEmpty() ? VCFConstants.EMPTY_ID_FIELD : Utils.join(",", rsIDs);

    final VariantContextBuilder builder = new VariantContextBuilder().source(name).id(ID);
    builder.loc(loc.getContig(), loc.getStart(), loc.getStop());
    builder.alleles(alleles);
    builder.genotypes(genotypes);
    builder.log10PError(log10PError);
    builder.filters(filters).attributes(mergeInfoWithMaxAC ? attributesWithMaxAC : attributes);

    // Trim the padded bases of all alleles if necessary
    VariantContext merged = createVariantContextWithTrimmedAlleles(builder.make());
    if (printMessages && remapped) System.out.printf("Remapped => %s%n", merged);
    return merged;
  }
Пример #13
0
  @Override
  public T traverse(
      final ActiveRegionWalker<M, T> walker, final LocusShardDataProvider dataProvider, T sum) {
    logger.debug(String.format("TraverseActiveRegion.traverse: Shard is %s", dataProvider));

    final LocusView locusView = getLocusView(walker, dataProvider);
    final GenomeLocSortedSet initialIntervals = engine.getIntervals();

    final LocusReferenceView referenceView = new LocusReferenceView(walker, dataProvider);
    final int activeRegionExtension =
        walker.getClass().getAnnotation(ActiveRegionExtension.class).extension();
    final int maxRegionSize =
        walker.getClass().getAnnotation(ActiveRegionExtension.class).maxRegion();

    if (locusView
        .hasNext()) { // trivial optimization to avoid unnecessary processing when there's nothing
                      // here at all
      int minStart = Integer.MAX_VALUE;
      ActivityProfile profile =
          new ActivityProfile(engine.getGenomeLocParser(), walker.hasPresetActiveRegions());

      ReferenceOrderedView referenceOrderedDataView =
          getReferenceOrderedView(walker, dataProvider, locusView);

      // We keep processing while the next reference location is within the interval
      GenomeLoc prevLoc = null;
      while (locusView.hasNext()) {
        final AlignmentContext locus = locusView.next();
        GenomeLoc location = locus.getLocation();

        if (prevLoc != null) {
          // fill in the active / inactive labels from the stop of the previous location to the
          // start of this location
          // TODO refactor to separate function
          for (int iii = prevLoc.getStop() + 1; iii < location.getStart(); iii++) {
            final GenomeLoc fakeLoc =
                engine.getGenomeLocParser().createGenomeLoc(prevLoc.getContig(), iii, iii);
            if (initialIntervals == null || initialIntervals.overlaps(fakeLoc)) {
              profile.add(
                  fakeLoc,
                  new ActivityProfileResult(
                      walker.hasPresetActiveRegions()
                              && walker.presetActiveRegions.overlaps(fakeLoc)
                          ? 1.0
                          : 0.0));
            }
          }
        }

        dataProvider.getShard().getReadMetrics().incrementNumIterations();

        // create reference context. Note that if we have a pileup of "extended events", the context
        // will
        // hold the (longest) stretch of deleted reference bases (if deletions are present in the
        // pileup).
        final ReferenceContext refContext = referenceView.getReferenceContext(location);

        // Iterate forward to get all reference ordered data covering this location
        final RefMetaDataTracker tracker =
            referenceOrderedDataView.getReferenceOrderedDataAtLocus(
                locus.getLocation(), refContext);

        // Call the walkers isActive function for this locus and add them to the list to be
        // integrated later
        if (initialIntervals == null || initialIntervals.overlaps(location)) {
          profile.add(location, walkerActiveProb(walker, tracker, refContext, locus, location));
        }

        // Grab all the previously unseen reads from this pileup and add them to the massive read
        // list
        for (final PileupElement p : locus.getBasePileup()) {
          final GATKSAMRecord read = p.getRead();
          if (!myReads.contains(read)) {
            myReads.add(read);
          }

          // If this is the last pileup for this shard calculate the minimum alignment start so that
          // we know
          // which active regions in the work queue are now safe to process
          minStart = Math.min(minStart, read.getAlignmentStart());
        }

        prevLoc = location;

        printProgress(locus.getLocation());
      }

      updateCumulativeMetrics(dataProvider.getShard());

      // Take the individual isActive calls and integrate them into contiguous active regions and
      // add these blocks of work to the work queue
      // band-pass filter the list of isActive probabilities and turn into active regions
      final ActivityProfile bandPassFiltered = profile.bandPassFilter();
      final List<ActiveRegion> activeRegions =
          bandPassFiltered.createActiveRegions(activeRegionExtension, maxRegionSize);

      // add active regions to queue of regions to process
      // first check if can merge active regions over shard boundaries
      if (!activeRegions.isEmpty()) {
        if (!workQueue.isEmpty()) {
          final ActiveRegion last = workQueue.getLast();
          final ActiveRegion first = activeRegions.get(0);
          if (last.isActive == first.isActive
              && last.getLocation().contiguousP(first.getLocation())
              && last.getLocation().size() + first.getLocation().size() <= maxRegionSize) {
            workQueue.removeLast();
            activeRegions.remove(first);
            workQueue.add(
                new ActiveRegion(
                    last.getLocation().union(first.getLocation()),
                    first.isActive,
                    this.engine.getGenomeLocParser(),
                    activeRegionExtension));
          }
        }
        workQueue.addAll(activeRegions);
      }

      logger.debug(
          "Integrated "
              + profile.size()
              + " isActive calls into "
              + activeRegions.size()
              + " regions.");

      // now go and process all of the active regions
      sum = processActiveRegions(walker, sum, minStart, dataProvider.getLocus().getContig());
    }

    return sum;
  }
Пример #14
0
 /**
  * Creates an iterator that can traverse over the entire reference specified in the given
  * ShardDataProvider.
  *
  * @param completeLocus Data provider to use as a backing source. Provider must have a reference
  *     (hasReference() == true).
  */
 public GenomeLocusIterator(GenomeLocParser parser, GenomeLoc completeLocus) {
   this.parser = parser;
   this.completeLocus = completeLocus;
   this.currentLocus = parser.createGenomeLoc(completeLocus.getContig(), completeLocus.getStart());
 }
Пример #15
0
  public Datum map(RefMetaDataTracker tracker, ReferenceContext ref, AlignmentContext context) {
    GenomeLoc cur = context.getLocation();

    if (verbose && showSkipped) {
      for (long i = context.getSkippedBases(); i >= 0; i--) {
        SAMSequenceDictionary dictionary =
            getToolkit().getReferenceDataSource().getReference().getSequenceDictionary();
        SAMSequenceRecord contig = dictionary.getSequence(cur.getContig());
        if (cur.getStop() < contig.getSequenceLength())
          cur = getToolkit().getGenomeLocParser().incPos(cur, 1);
        else
          cur =
              getToolkit()
                  .getGenomeLocParser()
                  .createGenomeLoc(
                      dictionary.getSequence(contig.getSequenceIndex() + 1).getSequenceName(),
                      1,
                      1);
        out.printf("%s: skipped%n", cur);
      }
    }

    long nRodsHere = 0;
    long nTotalBases = 0;

    if (ref == null) {
      // we're getting the last skipped update
      if (verbose)
        out.printf(
            "Last position was %s: skipping %d bases%n",
            context.getLocation(), context.getSkippedBases());
      nRodsHere = -1; // don't update this
      nTotalBases = context.getSkippedBases();
    } else {
      Collection<RODRecordList> rods = new LinkedList<RODRecordList>();
      for (RODRecordList rod : tracker.getBoundRodTracks()) {
        // System.out.printf("Considering rod %s%n", rod);
        if (rod.getLocation().getStart() == context.getLocation().getStart()
            && !rod.getName().equals("interval")) {
          // only consider the first element
          // System.out.printf("adding it%n");
          rods.add(rod);
        }
      }

      nRodsHere = rods.size();

      if (nRodsHere > 0) {
        if (verbose) {
          List<String> names = new ArrayList<String>();
          for (RODRecordList rod : rods) {
            names.add(rod.getName());
          }

          // System.out.printf("context is %s", context.getSkippedBases());
          out.printf(
              "At %s: found %d rod(s) [%s] after skipping %d bases%n",
              context.getLocation(), nRodsHere, Utils.join(",", names), context.getSkippedBases());
        }
      }

      nTotalBases = context.getSkippedBases() + 1;
    }

    return new Datum(nRodsHere, context.getSkippedBases(), nTotalBases);
  }
Пример #16
0
  /**
   * Read in a list of ExactCall objects from reader, keeping only those with starts in startsToKeep
   * or all sites (if this is empty)
   *
   * @param reader a just-opened reader sitting at the start of the file
   * @param startsToKeep a list of start position of the calls to keep, or empty if all calls should
   *     be kept
   * @param parser a genome loc parser to create genome locs
   * @return a list of ExactCall objects in reader
   * @throws IOException
   */
  public static List<ExactCall> readExactLog(
      final BufferedReader reader, final List<Integer> startsToKeep, GenomeLocParser parser)
      throws IOException {
    if (reader == null) throw new IllegalArgumentException("reader cannot be null");
    if (startsToKeep == null) throw new IllegalArgumentException("startsToKeep cannot be null");
    if (parser == null) throw new IllegalArgumentException("GenomeLocParser cannot be null");

    List<ExactCall> calls = new LinkedList<ExactCall>();

    // skip the header line
    reader.readLine();

    // skip the first "type" line
    reader.readLine();

    while (true) {
      final VariantContextBuilder builder = new VariantContextBuilder();
      final List<Allele> alleles = new ArrayList<Allele>();
      final List<Genotype> genotypes = new ArrayList<Genotype>();
      final double[] posteriors = new double[2];
      final double[] priors = MathUtils.normalizeFromLog10(new double[] {0.5, 0.5}, true);
      final List<Integer> mle = new ArrayList<Integer>();
      final Map<Allele, Double> log10pNonRefByAllele = new HashMap<Allele, Double>();
      long runtimeNano = -1;

      GenomeLoc currentLoc = null;
      while (true) {
        final String line = reader.readLine();
        if (line == null) return calls;

        final String[] parts = line.split("\t");
        final GenomeLoc lineLoc = parser.parseGenomeLoc(parts[0]);
        final String variable = parts[1];
        final String key = parts[2];
        final String value = parts[3];

        if (currentLoc == null) currentLoc = lineLoc;

        if (variable.equals("type")) {
          if (startsToKeep.isEmpty() || startsToKeep.contains(currentLoc.getStart())) {
            builder.alleles(alleles);
            final int stop = currentLoc.getStart() + alleles.get(0).length() - 1;
            builder.chr(currentLoc.getContig()).start(currentLoc.getStart()).stop(stop);
            builder.genotypes(genotypes);
            final int[] mleInts = ArrayUtils.toPrimitive(mle.toArray(new Integer[] {}));
            final AFCalcResult result =
                new AFCalcResult(mleInts, 1, alleles, posteriors, priors, log10pNonRefByAllele);
            calls.add(new ExactCall(builder.make(), runtimeNano, result));
          }
          break;
        } else if (variable.equals("allele")) {
          final boolean isRef = key.equals("0");
          alleles.add(Allele.create(value, isRef));
        } else if (variable.equals("PL")) {
          final GenotypeBuilder gb = new GenotypeBuilder(key);
          gb.PL(GenotypeLikelihoods.fromPLField(value).getAsPLs());
          genotypes.add(gb.make());
        } else if (variable.equals("log10PosteriorOfAFEq0")) {
          posteriors[0] = Double.valueOf(value);
        } else if (variable.equals("log10PosteriorOfAFGt0")) {
          posteriors[1] = Double.valueOf(value);
        } else if (variable.equals("MLE")) {
          mle.add(Integer.valueOf(value));
        } else if (variable.equals("pNonRefByAllele")) {
          final Allele a = Allele.create(key);
          log10pNonRefByAllele.put(a, Double.valueOf(value));
        } else if (variable.equals("runtime.nano")) {
          runtimeNano = Long.valueOf(value);
        } else {
          // nothing to do
        }
      }
    }
  }
 private GenomeLoc createIntervalBefore(GenomeLoc interval) {
   int start = Math.max(interval.getStart() - expandInterval, 0);
   int stop = Math.max(interval.getStart() - 1, 0);
   return parser.createGenomeLoc(interval.getContig(), interval.getContigIndex(), start, stop);
 }