Пример #1
0
  @Test
  public void testBasicClustering() {
    List<? extends WeightedVector> data = cubishTestData(1);

    BallKMeans r = new BallKMeans(new BruteSearch(new EuclideanDistanceMeasure()), 6, 20);
    r.cluster(data);
    for (Centroid centroid : r) {
      for (int i = 0; i < 10; i++) {
        System.out.printf("%10.4f", centroid.get(i));
      }
      System.out.printf("\n");
    }
  }
Пример #2
0
  @Test
  public void testClustering() {
    UpdatableSearcher searcher = new BruteSearch(new EuclideanDistanceMeasure());
    BallKMeans clusterer = new BallKMeans(searcher, 1 << NUM_DIMENSIONS, NUM_ITERATIONS);

    long startTime = System.currentTimeMillis();
    clusterer.cluster(syntheticData.getFirst());
    long endTime = System.currentTimeMillis();

    assertEquals(
        "Total weight not preserved",
        totalWeight(syntheticData.getFirst()),
        totalWeight(clusterer),
        1e-9);

    // Verify that each corner of the cube has a centroid very nearby.
    // This is probably FALSE for large-dimensional spaces!
    double maxWeight = 0;
    for (Vector mean : syntheticData.getSecond()) {
      WeightedThing<Vector> v = searcher.search(mean, 1).get(0);
      maxWeight = Math.max(v.getWeight(), maxWeight);
    }
    assertTrue("Maximum weight too large " + maxWeight, maxWeight < 0.05);
    double clusterTime = (endTime - startTime) / 1000.0;
    System.out.printf(
        "%s\n%.2f for clustering\n%.1f us per row\n\n",
        searcher.getClass().getName(),
        clusterTime,
        clusterTime / syntheticData.getFirst().size() * 1e6);

    // verify that the total weight of the centroids near each corner is correct
    double[] cornerWeights = new double[1 << NUM_DIMENSIONS];
    Searcher trueFinder = new BruteSearch(new EuclideanDistanceMeasure());
    for (Vector trueCluster : syntheticData.getSecond()) {
      trueFinder.add(trueCluster);
    }
    for (Centroid centroid : clusterer) {
      WeightedThing<Vector> closest = trueFinder.search(centroid, 1).get(0);
      cornerWeights[((Centroid) closest.getValue()).getIndex()] += centroid.getWeight();
    }
    int expectedNumPoints = NUM_DATA_POINTS / (1 << NUM_DIMENSIONS);
    for (double v : cornerWeights) {
      System.out.printf("%f ", v);
    }
    System.out.println();
    for (double v : cornerWeights) {
      assertEquals(expectedNumPoints, v, 0);
    }
  }
Пример #3
0
  @Test
  public void testInitialization() {
    // start with super clusterable data
    List<? extends WeightedVector> data = cubishTestData(0.01);

    // just do initialization of ball k-means.  This should drop a point into each of the clusters
    BallKMeans r = new BallKMeans(new BruteSearch(new EuclideanDistanceMeasure()), 6, 20);
    r.cluster(data);

    // put the centroids into a matrix
    Matrix x = new DenseMatrix(6, 5);
    int row = 0;
    for (Centroid c : r) {
      x.viewRow(row).assign(c.viewPart(0, 5));
      row++;
    }

    // verify that each column looks right.  Should contain zeros except for a single 6.
    final Vector columnNorms =
        x.aggregateColumns(
            new VectorFunction() {
              @Override
              public double apply(Vector f) {
                // return the sum of three discrepancy measures
                return Math.abs(f.minValue())
                    + Math.abs(f.maxValue() - 6)
                    + Math.abs(f.norm(1) - 6);
              }
            });
    // verify all errors are nearly zero
    assertEquals(0, columnNorms.norm(1) / columnNorms.size(), 0.1);

    // verify that the centroids are a permutation of the original ones
    SingularValueDecomposition svd = new SingularValueDecomposition(x);
    Vector s = svd.getS().viewDiagonal().assign(Functions.div(6));
    assertEquals(5, s.getLengthSquared(), 0.05);
    assertEquals(5, s.norm(1), 0.05);
  }