/**
  * Clones using the powers of XML. Do not use unless necessary.
  *
  * @param plan The plan.
  * @return The clone.
  */
 public static BaseWork cloneBaseWork(BaseWork plan) {
   PerfLogger perfLogger = SessionState.getPerfLogger();
   perfLogger.PerfLogBegin(CLASS_NAME, PerfLogger.CLONE_PLAN);
   ByteArrayOutputStream baos = new ByteArrayOutputStream(4096);
   serializePlan(plan, baos, true);
   BaseWork newPlan =
       deserializePlan(new ByteArrayInputStream(baos.toByteArray()), plan.getClass(), true);
   perfLogger.PerfLogEnd(CLASS_NAME, PerfLogger.CLONE_PLAN);
   return newPlan;
 }
 /**
  * Clones using the powers of XML. Do not use unless necessary.
  *
  * @param plan The plan.
  * @return The clone.
  */
 public static MapredWork clonePlan(MapredWork plan) {
   // TODO: need proper clone. Meanwhile, let's at least keep this horror in one place
   PerfLogger perfLogger = SessionState.getPerfLogger();
   perfLogger.PerfLogBegin(CLASS_NAME, PerfLogger.CLONE_PLAN);
   ByteArrayOutputStream baos = new ByteArrayOutputStream(4096);
   serializePlan(plan, baos, true);
   MapredWork newPlan =
       deserializePlan(new ByteArrayInputStream(baos.toByteArray()), MapredWork.class, true);
   perfLogger.PerfLogEnd(CLASS_NAME, PerfLogger.CLONE_PLAN);
   return newPlan;
 }
 private static void serializePlan(Kryo kryo, Object plan, OutputStream out, boolean cloningPlan) {
   PerfLogger perfLogger = SessionState.getPerfLogger();
   perfLogger.PerfLogBegin(CLASS_NAME, PerfLogger.SERIALIZE_PLAN);
   LOG.info("Serializing " + plan.getClass().getSimpleName() + " using kryo");
   if (cloningPlan) {
     serializeObjectByKryo(kryo, plan, out);
   } else {
     serializeObjectByKryo(kryo, plan, out);
   }
   perfLogger.PerfLogEnd(CLASS_NAME, PerfLogger.SERIALIZE_PLAN);
 }
 private static <T> T deserializePlan(
     Kryo kryo, InputStream in, Class<T> planClass, boolean cloningPlan) {
   PerfLogger perfLogger = SessionState.getPerfLogger();
   perfLogger.PerfLogBegin(CLASS_NAME, PerfLogger.DESERIALIZE_PLAN);
   T plan;
   LOG.info("Deserializing " + planClass.getSimpleName() + " using kryo");
   if (cloningPlan) {
     plan = deserializeObjectByKryo(kryo, in, planClass);
   } else {
     plan = deserializeObjectByKryo(kryo, in, planClass);
   }
   perfLogger.PerfLogEnd(CLASS_NAME, PerfLogger.DESERIALIZE_PLAN);
   return plan;
 }
Пример #5
0
/** Map side Join operator implementation. */
public class MapJoinOperator extends AbstractMapJoinOperator<MapJoinDesc> implements Serializable {

  private static final long serialVersionUID = 1L;
  private static final Log LOG = LogFactory.getLog(MapJoinOperator.class.getName());
  private static final String CLASS_NAME = MapJoinOperator.class.getName();
  private final PerfLogger perfLogger = SessionState.getPerfLogger();

  private transient String cacheKey;
  private transient ObjectCache cache;

  protected HashTableLoader loader;
  private boolean loadCalled;

  protected transient MapJoinTableContainer[] mapJoinTables;
  private transient MapJoinTableContainerSerDe[] mapJoinTableSerdes;
  private transient boolean hashTblInitedOnce;
  protected transient ReusableGetAdaptor[] hashMapRowGetters;

  private UnwrapRowContainer[] unwrapContainer;
  private transient Configuration hconf;
  private transient boolean hybridMapJoinLeftover; // whether there's spilled data to be processed
  protected transient MapJoinBytesTableContainer[] spilledMapJoinTables; // used to hold restored
  // spilled small tables
  protected HybridHashTableContainer firstSmallTable; // The first small table;
  // Only this table has spilled big table rows

  public MapJoinOperator() {}

  public MapJoinOperator(AbstractMapJoinOperator<? extends MapJoinDesc> mjop) {
    super(mjop);
  }

  /*
   * We need the base (operator.java) implementation of start/endGroup.
   * The parent class has functionality in those that map join can't use.
   * Note: The mapjoin can be run in the reducer only on Tez.
   */
  @Override
  public void endGroup() throws HiveException {
    defaultEndGroup();
  }

  @Override
  public void startGroup() throws HiveException {
    defaultStartGroup();
  }

  protected HashTableLoader getHashTableLoader(Configuration hconf) {
    return HashTableLoaderFactory.getLoader(hconf);
  }

  @Override
  protected Collection<Future<?>> initializeOp(Configuration hconf) throws HiveException {
    this.hconf = hconf;
    unwrapContainer = new UnwrapRowContainer[conf.getTagLength()];

    Collection<Future<?>> result = super.initializeOp(hconf);
    if (result == null) {
      result = new HashSet<Future<?>>();
    }

    int tagLen = conf.getTagLength();

    // On Tez only: The hash map might already be cached in the container we run
    // the task in. On MR: The cache is a no-op.
    cacheKey =
        HiveConf.getVar(hconf, HiveConf.ConfVars.HIVEQUERYID)
            + "__HASH_MAP_"
            + this.getOperatorId()
            + "_container";

    cache = ObjectCacheFactory.getCache(hconf);
    loader = getHashTableLoader(hconf);

    hashMapRowGetters = null;

    mapJoinTables = new MapJoinTableContainer[tagLen];
    mapJoinTableSerdes = new MapJoinTableContainerSerDe[tagLen];
    hashTblInitedOnce = false;

    generateMapMetaData();

    final ExecMapperContext mapContext = getExecContext();
    final MapredContext mrContext = MapredContext.get();

    if (!conf.isBucketMapJoin() && !conf.isDynamicPartitionHashJoin()) {
      /*
       * The issue with caching in case of bucket map join is that different tasks
       * process different buckets and if the container is reused to join a different bucket,
       * join results can be incorrect. The cache is keyed on operator id and for bucket map join
       * the operator does not change but data needed is different. For a proper fix, this
       * requires changes in the Tez API with regard to finding bucket id and
       * also ability to schedule tasks to re-use containers that have cached the specific bucket.
       */
      if (isLogInfoEnabled) {
        LOG.info("This is not bucket map join, so cache");
      }

      Future<Pair<MapJoinTableContainer[], MapJoinTableContainerSerDe[]>> future =
          cache.retrieveAsync(
              cacheKey,
              new Callable<Pair<MapJoinTableContainer[], MapJoinTableContainerSerDe[]>>() {
                @Override
                public Pair<MapJoinTableContainer[], MapJoinTableContainerSerDe[]> call()
                    throws HiveException {
                  return loadHashTable(mapContext, mrContext);
                }
              });
      result.add(future);
    } else if (!isInputFileChangeSensitive(mapContext)) {
      loadHashTable(mapContext, mrContext);
      hashTblInitedOnce = true;
    }
    return result;
  }

  @SuppressWarnings("unchecked")
  @Override
  protected final void completeInitializationOp(Object[] os) throws HiveException {
    if (os.length != 0) {
      Pair<MapJoinTableContainer[], MapJoinTableContainerSerDe[]> pair =
          (Pair<MapJoinTableContainer[], MapJoinTableContainerSerDe[]>) os[0];

      boolean spilled = false;
      for (MapJoinTableContainer container : pair.getLeft()) {
        if (container != null) {
          spilled = spilled || container.hasSpill();
        }
      }

      if (!loadCalled && spilled) {
        // we can't use the cached table because it has spilled.
        loadHashTable(getExecContext(), MapredContext.get());
      } else {
        // let's use the table from the cache.
        mapJoinTables = pair.getLeft();
        mapJoinTableSerdes = pair.getRight();
      }
      hashTblInitedOnce = true;
    }

    if (this.getExecContext() != null) {
      // reset exec context so that initialization of the map operator happens
      // properly
      this.getExecContext().setLastInputPath(null);
      this.getExecContext().setCurrentInputPath(null);
    }
  }

  @Override
  protected List<ObjectInspector> getValueObjectInspectors(
      byte alias, List<ObjectInspector>[] aliasToObjectInspectors) {
    int[] valueIndex = conf.getValueIndex(alias);
    if (valueIndex == null) {
      return super.getValueObjectInspectors(alias, aliasToObjectInspectors);
    }
    unwrapContainer[alias] = new UnwrapRowContainer(alias, valueIndex, hasFilter(alias));

    List<ObjectInspector> inspectors = aliasToObjectInspectors[alias];

    int bigPos = conf.getPosBigTable();
    List<ObjectInspector> valueOI = new ArrayList<ObjectInspector>();
    for (int i = 0; i < valueIndex.length; i++) {
      if (valueIndex[i] >= 0 && !joinKeysObjectInspectors[bigPos].isEmpty()) {
        valueOI.add(joinKeysObjectInspectors[bigPos].get(valueIndex[i]));
      } else {
        valueOI.add(inspectors.get(i));
      }
    }
    return valueOI;
  }

  public void generateMapMetaData() throws HiveException {
    // generate the meta data for key
    // index for key is -1

    try {
      TableDesc keyTableDesc = conf.getKeyTblDesc();
      SerDe keySerializer =
          (SerDe) ReflectionUtil.newInstance(keyTableDesc.getDeserializerClass(), null);
      SerDeUtils.initializeSerDe(keySerializer, null, keyTableDesc.getProperties(), null);
      MapJoinObjectSerDeContext keyContext = new MapJoinObjectSerDeContext(keySerializer, false);
      for (int pos = 0; pos < order.length; pos++) {
        if (pos == posBigTable) {
          continue;
        }
        TableDesc valueTableDesc;
        if (conf.getNoOuterJoin()) {
          valueTableDesc = conf.getValueTblDescs().get(pos);
        } else {
          valueTableDesc = conf.getValueFilteredTblDescs().get(pos);
        }
        SerDe valueSerDe =
            (SerDe) ReflectionUtil.newInstance(valueTableDesc.getDeserializerClass(), null);
        SerDeUtils.initializeSerDe(valueSerDe, null, valueTableDesc.getProperties(), null);
        MapJoinObjectSerDeContext valueContext =
            new MapJoinObjectSerDeContext(valueSerDe, hasFilter(pos));
        mapJoinTableSerdes[pos] = new MapJoinTableContainerSerDe(keyContext, valueContext);
      }
    } catch (SerDeException e) {
      throw new HiveException(e);
    }
  }

  protected Pair<MapJoinTableContainer[], MapJoinTableContainerSerDe[]> loadHashTable(
      ExecMapperContext mapContext, MapredContext mrContext) throws HiveException {
    loadCalled = true;

    if (canSkipReload(mapContext)) {
      // no need to reload
      return new ImmutablePair<MapJoinTableContainer[], MapJoinTableContainerSerDe[]>(
          mapJoinTables, mapJoinTableSerdes);
    }

    perfLogger.PerfLogBegin(CLASS_NAME, PerfLogger.LOAD_HASHTABLE);
    loader.init(mapContext, mrContext, hconf, this);
    try {
      loader.load(mapJoinTables, mapJoinTableSerdes);
    } catch (HiveException e) {
      if (isLogInfoEnabled) {
        LOG.info("Exception loading hash tables. Clearing partially loaded hash table containers.");
      }

      // there could be some spilled partitions which needs to be cleaned up
      clearAllTableContainers();
      throw e;
    }

    hashTblInitedOnce = true;

    Pair<MapJoinTableContainer[], MapJoinTableContainerSerDe[]> pair =
        new ImmutablePair<MapJoinTableContainer[], MapJoinTableContainerSerDe[]>(
            mapJoinTables, mapJoinTableSerdes);

    perfLogger.PerfLogEnd(CLASS_NAME, PerfLogger.LOAD_HASHTABLE);

    if (canSkipJoinProcessing(mapContext)) {
      LOG.info("Skipping big table join processing for " + this.toString());
      this.setDone(true);
    }

    return pair;
  }

  // Load the hash table
  @Override
  public void cleanUpInputFileChangedOp() throws HiveException {
    loadHashTable(getExecContext(), MapredContext.get());
  }

  protected JoinUtil.JoinResult setMapJoinKey(ReusableGetAdaptor dest, Object row, byte alias)
      throws HiveException {
    return dest.setFromRow(row, joinKeys[alias], joinKeysObjectInspectors[alias]);
  }

  protected MapJoinKey getRefKey(byte alias) {
    // We assume that since we are joining on the same key, all tables would have either
    // optimized or non-optimized key; hence, we can pass any key in any table as reference.
    // We do it so that MJKB could determine whether it can use optimized keys.
    for (byte pos = 0; pos < order.length; pos++) {
      if (pos == alias) continue;
      MapJoinKey refKey = mapJoinTables[pos].getAnyKey();
      if (refKey != null) return refKey;
    }
    return null; // All join tables have 0 keys, doesn't matter what we generate.
  }

  @Override
  public void process(Object row, int tag) throws HiveException {
    try {
      alias = (byte) tag;
      if (hashMapRowGetters == null) {
        hashMapRowGetters = new ReusableGetAdaptor[mapJoinTables.length];
        MapJoinKey refKey = getRefKey(alias);
        for (byte pos = 0; pos < order.length; pos++) {
          if (pos != alias) {
            hashMapRowGetters[pos] = mapJoinTables[pos].createGetter(refKey);
          }
        }
      }

      // As we're calling processOp again to process the leftover "tuples", we know the "row" is
      // coming from the spilled matchfile. We need to recreate hashMapRowGetter against new
      // hashtables
      if (hybridMapJoinLeftover) {
        MapJoinKey refKey = getRefKey(alias);
        for (byte pos = 0; pos < order.length; pos++) {
          if (pos != alias && spilledMapJoinTables[pos] != null) {
            hashMapRowGetters[pos] = spilledMapJoinTables[pos].createGetter(refKey);
          }
        }
      }

      // compute keys and values as StandardObjects
      ReusableGetAdaptor firstSetKey = null;
      int fieldCount = joinKeys[alias].size();
      boolean joinNeeded = false;
      boolean bigTableRowSpilled = false;
      for (byte pos = 0; pos < order.length; pos++) {
        if (pos != alias) {
          JoinUtil.JoinResult joinResult;
          ReusableGetAdaptor adaptor;
          if (firstSetKey == null) {
            adaptor = firstSetKey = hashMapRowGetters[pos];
            joinResult = setMapJoinKey(firstSetKey, row, alias);
          } else {
            // Keys for all tables are the same, so only the first has to deserialize them.
            adaptor = hashMapRowGetters[pos];
            joinResult = adaptor.setFromOther(firstSetKey);
          }
          MapJoinRowContainer rowContainer = adaptor.getCurrentRows();
          if (rowContainer != null && unwrapContainer[pos] != null) {
            Object[] currentKey = firstSetKey.getCurrentKey();
            rowContainer = unwrapContainer[pos].setInternal(rowContainer, currentKey);
          }
          // there is no join-value or join-key has all null elements
          if (rowContainer == null || firstSetKey.hasAnyNulls(fieldCount, nullsafes)) {
            if (!noOuterJoin) {
              // For Hybrid Grace Hash Join, during the 1st round processing,
              // we only keep the LEFT side if the row is not spilled
              if (!conf.isHybridHashJoin()
                  || hybridMapJoinLeftover
                  || (!hybridMapJoinLeftover && joinResult != JoinUtil.JoinResult.SPILL)) {
                joinNeeded = true;
                storage[pos] = dummyObjVectors[pos];
              }
            } else {
              storage[pos] = emptyList;
            }
          } else {
            joinNeeded = true;
            storage[pos] = rowContainer.copy();
            aliasFilterTags[pos] = rowContainer.getAliasFilter();
          }
          // Spill the big table rows into appropriate partition:
          // When the JoinResult is SPILL, it means the corresponding small table row may have been
          // spilled to disk (at least the partition that holds this row is on disk). So we need to
          // postpone the join processing for this pair by also spilling this big table row.
          if (joinResult == JoinUtil.JoinResult.SPILL
              && !bigTableRowSpilled) { // For n-way join, only spill big table rows once
            spillBigTableRow(mapJoinTables[pos], row);
            bigTableRowSpilled = true;
          }
        }
      }
      if (joinNeeded) {
        List<Object> value = getFilteredValue(alias, row);
        // Add the value to the ArrayList
        storage[alias].addRow(value);
        // generate the output records
        checkAndGenObject();
      }
      // done with the row
      storage[tag].clearRows();
      for (byte pos = 0; pos < order.length; pos++) {
        if (pos != tag) {
          storage[pos] = null;
        }
      }
    } catch (Exception e) {
      String msg = "Unexpected exception: " + e.getMessage();
      LOG.error(msg, e);
      throw new HiveException(msg, e);
    }
  }

  /**
   * Postpone processing the big table row temporarily by spilling it to a row container
   *
   * @param hybridHtContainer Hybrid hashtable container
   * @param row big table row
   */
  protected void spillBigTableRow(MapJoinTableContainer hybridHtContainer, Object row)
      throws HiveException {
    HybridHashTableContainer ht = (HybridHashTableContainer) hybridHtContainer;
    int partitionId = ht.getToSpillPartitionId();
    HashPartition hp = ht.getHashPartitions()[partitionId];
    ObjectContainer bigTable = hp.getMatchfileObjContainer();
    bigTable.add(row);
  }

  @Override
  public void closeOp(boolean abort) throws HiveException {
    boolean spilled = false;
    for (MapJoinTableContainer container : mapJoinTables) {
      if (container != null) {
        spilled = spilled || container.hasSpill();
        container.dumpMetrics();
      }
    }

    // For Hybrid Grace Hash Join, we need to see if there is any spilled data to be processed next
    if (spilled) {
      if (!abort) {
        if (hashMapRowGetters == null) {
          hashMapRowGetters = new ReusableGetAdaptor[mapJoinTables.length];
        }
        int numPartitions = 0;
        // Find out number of partitions for each small table (should be same across tables)
        for (byte pos = 0; pos < mapJoinTables.length; pos++) {
          if (pos != conf.getPosBigTable()) {
            firstSmallTable = (HybridHashTableContainer) mapJoinTables[pos];
            numPartitions = firstSmallTable.getHashPartitions().length;
            break;
          }
        }
        assert numPartitions != 0 : "Number of partitions must be greater than 0!";

        if (firstSmallTable.hasSpill()) {
          spilledMapJoinTables = new MapJoinBytesTableContainer[mapJoinTables.length];
          hybridMapJoinLeftover = true;

          // Clear all in-memory partitions first
          for (byte pos = 0; pos < mapJoinTables.length; pos++) {
            MapJoinTableContainer tableContainer = mapJoinTables[pos];
            if (tableContainer != null && tableContainer instanceof HybridHashTableContainer) {
              HybridHashTableContainer hybridHtContainer =
                  (HybridHashTableContainer) tableContainer;
              hybridHtContainer.dumpStats();

              HashPartition[] hashPartitions = hybridHtContainer.getHashPartitions();
              // Clear all in memory partitions first
              for (int i = 0; i < hashPartitions.length; i++) {
                if (!hashPartitions[i].isHashMapOnDisk()) {
                  hybridHtContainer.setTotalInMemRowCount(
                      hybridHtContainer.getTotalInMemRowCount()
                          - hashPartitions[i].getHashMapFromMemory().getNumValues());
                  hashPartitions[i].getHashMapFromMemory().clear();
                }
              }
              assert hybridHtContainer.getTotalInMemRowCount() == 0;
            }
          }

          // Reprocess the spilled data
          for (int i = 0; i < numPartitions; i++) {
            HashPartition[] hashPartitions = firstSmallTable.getHashPartitions();
            if (hashPartitions[i].isHashMapOnDisk()) {
              try {
                continueProcess(i); // Re-process spilled data
              } catch (Exception e) {
                throw new HiveException(e);
              }
              for (byte pos = 0; pos < order.length; pos++) {
                if (pos != conf.getPosBigTable()) spilledMapJoinTables[pos] = null;
              }
            }
          }
        }
      }

      if (isLogInfoEnabled) {
        LOG.info("spilled: " + spilled + " abort: " + abort + ". Clearing spilled partitions.");
      }

      // spilled tables are loaded always (no sharing), so clear it
      clearAllTableContainers();
      cache.remove(cacheKey);
    }

    // in mapreduce case, we need to always clear up as mapreduce doesn't have object registry.
    if ((this.getExecContext() != null)
        && (this.getExecContext().getLocalWork() != null)
        && (this.getExecContext().getLocalWork().getInputFileChangeSensitive())
        && !(HiveConf.getVar(hconf, ConfVars.HIVE_EXECUTION_ENGINE).equals("spark")
            && SparkUtilities.isDedicatedCluster(hconf))) {
      if (isLogInfoEnabled) {
        LOG.info("MR: Clearing all map join table containers.");
      }
      clearAllTableContainers();
    }

    this.loader = null;
    super.closeOp(abort);
  }

  private void clearAllTableContainers() {
    if (mapJoinTables != null) {
      for (MapJoinTableContainer tableContainer : mapJoinTables) {
        if (tableContainer != null) {
          tableContainer.clear();
        }
      }
    }
  }

  /**
   * Continue processing join between spilled hashtable(s) and spilled big table
   *
   * @param partitionId the partition number across all small tables to process
   * @throws HiveException
   * @throws IOException
   * @throws SerDeException
   */
  private void continueProcess(int partitionId)
      throws HiveException, IOException, SerDeException, ClassNotFoundException {
    for (byte pos = 0; pos < mapJoinTables.length; pos++) {
      if (pos != conf.getPosBigTable()) {
        reloadHashTable(pos, partitionId);
      }
    }
    reProcessBigTable(partitionId);
  }

  /**
   * Reload hashtable from the hash partition. It can have two steps: 1) Deserialize a serialized
   * hash table, and 2) Merge every key/value pair from small table container into the hash table
   *
   * @param pos position of small table
   * @param partitionId the partition of the small table to be reloaded from
   * @throws IOException
   * @throws HiveException
   * @throws SerDeException
   */
  protected void reloadHashTable(byte pos, int partitionId)
      throws IOException, HiveException, SerDeException, ClassNotFoundException {
    HybridHashTableContainer container = (HybridHashTableContainer) mapJoinTables[pos];
    HashPartition partition = container.getHashPartitions()[partitionId];

    // Merge the sidefile into the newly created hash table
    // This is where the spilling may happen again
    KeyValueContainer kvContainer = partition.getSidefileKVContainer();
    int rowCount = kvContainer.size();
    LOG.info(
        "Hybrid Grace Hash Join: Number of rows restored from KeyValueContainer: "
            + kvContainer.size());

    // Deserialize the on-disk hash table
    // We're sure this part is smaller than memory limit
    if (rowCount <= 0) {
      rowCount =
          1024 * 1024; // Since rowCount is used later to instantiate a BytesBytesMultiHashMap
      // as the initialCapacity which cannot be 0, we provide a reasonable
      // positive number here
    }
    BytesBytesMultiHashMap restoredHashMap = partition.getHashMapFromDisk(rowCount);
    rowCount += restoredHashMap.getNumValues();
    LOG.info("Hybrid Grace Hash Join: Deserializing spilled hash partition...");
    LOG.info("Hybrid Grace Hash Join: Number of rows in hashmap: " + rowCount);

    // If based on the new key count, keyCount is smaller than a threshold,
    // then just load the entire restored hashmap into memory.
    // The size of deserialized partition shouldn't exceed half of memory limit
    if (rowCount * container.getTableRowSize() >= container.getMemoryThreshold() / 2) {
      LOG.warn(
          "Hybrid Grace Hash Join: Hash table cannot be reloaded since it"
              + " will be greater than memory limit. Recursive spilling is currently not supported");
    }

    KeyValueHelper writeHelper = container.getWriteHelper();
    while (kvContainer.hasNext()) {
      ObjectPair<HiveKey, BytesWritable> pair = kvContainer.next();
      Writable key = pair.getFirst();
      Writable val = pair.getSecond();
      writeHelper.setKeyValue(key, val);
      restoredHashMap.put(writeHelper, -1);
    }

    container.setTotalInMemRowCount(
        container.getTotalInMemRowCount() + restoredHashMap.getNumValues());
    kvContainer.clear();

    spilledMapJoinTables[pos] = new MapJoinBytesTableContainer(restoredHashMap);
    spilledMapJoinTables[pos].setInternalValueOi(container.getInternalValueOi());
    spilledMapJoinTables[pos].setSortableSortOrders(container.getSortableSortOrders());
  }

  /**
   * Iterate over the big table row container and feed process() with leftover rows
   *
   * @param partitionId the partition from which to take out spilled big table rows
   * @throws HiveException
   */
  protected void reProcessBigTable(int partitionId) throws HiveException {
    // For binary join, firstSmallTable is the only small table; it has reference to spilled big
    // table rows;
    // For n-way join, since we only spill once, when processing the first small table, so only the
    // firstSmallTable has reference to the spilled big table rows.
    HashPartition partition = firstSmallTable.getHashPartitions()[partitionId];
    ObjectContainer bigTable = partition.getMatchfileObjContainer();
    while (bigTable.hasNext()) {
      Object row = bigTable.next();
      process(row, conf.getPosBigTable());
    }
    bigTable.clear();
  }

  /**
   * Implements the getName function for the Node Interface.
   *
   * @return the name of the operator
   */
  @Override
  public String getName() {
    return getOperatorName();
  }

  public static String getOperatorName() {
    return "MAPJOIN";
  }

  @Override
  public OperatorType getType() {
    return OperatorType.MAPJOIN;
  }

  protected boolean isInputFileChangeSensitive(ExecMapperContext mapContext) {
    return !(mapContext == null
        || mapContext.getLocalWork() == null
        || mapContext.getLocalWork().getInputFileChangeSensitive() == false);
  }

  protected boolean canSkipReload(ExecMapperContext mapContext) {
    return (this.hashTblInitedOnce && !isInputFileChangeSensitive(mapContext));
  }

  // If the loaded hash table is empty, for some conditions we can skip processing the big table
  // rows.
  protected boolean canSkipJoinProcessing(ExecMapperContext mapContext) {
    if (!canSkipReload(mapContext)) {
      return false;
    }

    JoinCondDesc[] joinConds = getConf().getConds();
    if (joinConds.length > 0) {
      for (JoinCondDesc joinCond : joinConds) {
        if (joinCond.getType() != JoinDesc.INNER_JOIN) {
          return false;
        }
      }
    } else {
      return false;
    }

    boolean skipJoinProcessing = false;
    for (int idx = 0; idx < mapJoinTables.length; ++idx) {
      if (idx == getConf().getPosBigTable()) {
        continue;
      }
      MapJoinTableContainer mapJoinTable = mapJoinTables[idx];
      if (mapJoinTable.size() == 0) {
        // If any table is empty, an inner join involving the tables should yield 0 rows.
        LOG.info("Hash table number " + idx + " is empty");
        skipJoinProcessing = true;
        break;
      }
    }
    return skipJoinProcessing;
  }
}