Пример #1
0
  /**
   * Add the StatsTask as a dependent task of the MoveTask because StatsTask will change the
   * Table/Partition metadata. For atomicity, we should not change it before the data is actually
   * there done by MoveTask.
   *
   * @param nd the FileSinkOperator whose results are taken care of by the MoveTask.
   * @param mvTask The MoveTask that moves the FileSinkOperator's results.
   * @param currTask The MapRedTask that the FileSinkOperator belongs to.
   * @param hconf HiveConf
   */
  private void addStatsTask(
      FileSinkOperator nd, MoveTask mvTask, Task<? extends Serializable> currTask, HiveConf hconf) {

    MoveWork mvWork = ((MoveTask) mvTask).getWork();
    StatsWork statsWork = null;
    if (mvWork.getLoadTableWork() != null) {
      statsWork = new StatsWork(mvWork.getLoadTableWork());
    } else if (mvWork.getLoadFileWork() != null) {
      statsWork = new StatsWork(mvWork.getLoadFileWork());
    }
    assert statsWork != null : "Error when genereting StatsTask";
    statsWork.setStatsReliable(hconf.getBoolVar(ConfVars.HIVE_STATS_RELIABLE));
    MapredWork mrWork = (MapredWork) currTask.getWork();

    // AggKey in StatsWork is used for stats aggregation while StatsAggPrefix
    // in FileSinkDesc is used for stats publishing. They should be consistent.
    statsWork.setAggKey(((FileSinkOperator) nd).getConf().getStatsAggPrefix());
    Task<? extends Serializable> statsTask = TaskFactory.get(statsWork, hconf);

    // mark the MapredWork and FileSinkOperator for gathering stats
    nd.getConf().setGatherStats(true);
    mrWork.setGatheringStats(true);
    nd.getConf().setStatsReliable(hconf.getBoolVar(ConfVars.HIVE_STATS_RELIABLE));
    nd.getConf()
        .setMaxStatsKeyPrefixLength(hconf.getIntVar(ConfVars.HIVE_STATS_KEY_PREFIX_MAX_LENGTH));
    // mrWork.addDestinationTable(nd.getConf().getTableInfo().getTableName());

    // subscribe feeds from the MoveTask so that MoveTask can forward the list
    // of dynamic partition list to the StatsTask
    mvTask.addDependentTask(statsTask);
    statsTask.subscribeFeed(mvTask);
  }
Пример #2
0
  /**
   * File Sink Operator encountered.
   *
   * @param nd the file sink operator encountered
   * @param opProcCtx context
   */
  public Object process(
      Node nd, Stack<Node> stack, NodeProcessorCtx opProcCtx, Object... nodeOutputs)
      throws SemanticException {
    GenMRProcContext ctx = (GenMRProcContext) opProcCtx;
    ParseContext parseCtx = ctx.getParseCtx();
    boolean chDir = false;
    Task<? extends Serializable> currTask = ctx.getCurrTask();
    FileSinkOperator fsOp = (FileSinkOperator) nd;
    boolean isInsertTable = // is INSERT OVERWRITE TABLE
        fsOp.getConf().getTableInfo().getTableName() != null
            && parseCtx.getQB().getParseInfo().isInsertToTable();
    HiveConf hconf = parseCtx.getConf();

    // Has the user enabled merging of files for map-only jobs or for all jobs
    if ((ctx.getMvTask() != null) && (!ctx.getMvTask().isEmpty())) {
      List<Task<? extends Serializable>> mvTasks = ctx.getMvTask();

      // In case of unions or map-joins, it is possible that the file has
      // already been seen.
      // So, no need to attempt to merge the files again.
      if ((ctx.getSeenFileSinkOps() == null) || (!ctx.getSeenFileSinkOps().contains(nd))) {

        // no need of merging if the move is to a local file system
        MoveTask mvTask = (MoveTask) findMoveTask(mvTasks, fsOp);

        if (isInsertTable && hconf.getBoolVar(HiveConf.ConfVars.HIVESTATSAUTOGATHER)) {
          addStatsTask(fsOp, mvTask, currTask, parseCtx.getConf());
        }

        if ((mvTask != null) && !mvTask.isLocal()) {
          // There are separate configuration parameters to control whether to
          // merge for a map-only job
          // or for a map-reduce job
          MapredWork currWork = (MapredWork) currTask.getWork();
          boolean mergeMapOnly =
              hconf.getBoolVar(HiveConf.ConfVars.HIVEMERGEMAPFILES)
                  && currWork.getReducer() == null;
          boolean mergeMapRed =
              hconf.getBoolVar(HiveConf.ConfVars.HIVEMERGEMAPREDFILES)
                  && currWork.getReducer() != null;
          if (mergeMapOnly || mergeMapRed) {
            chDir = true;
          }
        }
      }
    }

    String finalName = processFS(nd, stack, opProcCtx, chDir);

    // need to merge the files in the destination table/partitions
    if (chDir && (finalName != null)) {
      createMergeJob((FileSinkOperator) nd, ctx, finalName);
    }

    return null;
  }
 // Remove the reduce sink operator
 // Use BucketizedHiveInputFormat so that one mapper processes exactly one file
 private void removeReduceSink(
     ReduceSinkOperator rsOp, TableScanOperator tsOp, FileSinkOperator fsOp) {
   Operator<? extends OperatorDesc> parRSOp = rsOp.getParentOperators().get(0);
   parRSOp.getChildOperators().set(0, fsOp);
   fsOp.getParentOperators().set(0, parRSOp);
   fsOp.getConf().setMultiFileSpray(false);
   fsOp.getConf().setTotalFiles(1);
   fsOp.getConf().setNumFiles(1);
   fsOp.getConf().setRemovedReduceSinkBucketSort(true);
   tsOp.setUseBucketizedHiveInputFormat(true);
 }
  @Override
  public ParseContext transform(ParseContext pctx) throws SemanticException {

    Map<Rule, NodeProcessor> opRules = new LinkedHashMap<Rule, NodeProcessor>();

    // process reduce sink added by hive.enforce.bucketing or hive.enforce.sorting
    opRules.put(
        new RuleRegExp(
            "R1",
            ReduceSinkOperator.getOperatorName()
                + "%"
                + SelectOperator.getOperatorName()
                + "%"
                + FileSinkOperator.getOperatorName()
                + "%"),
        getBucketSortReduceSinkProc(pctx));

    // The dispatcher fires the processor corresponding to the closest matching rule
    Dispatcher disp = new DefaultRuleDispatcher(getDefaultProc(), opRules, null);
    GraphWalker ogw = new DefaultGraphWalker(disp);

    // Create a list of top nodes
    ArrayList<Node> topNodes = new ArrayList<Node>();
    topNodes.addAll(pctx.getTopOps().values());
    ogw.startWalking(topNodes, null);

    return pctx;
  }
Пример #5
0
  private Task<? extends Serializable> findMoveTask(
      List<Task<? extends Serializable>> mvTasks, FileSinkOperator fsOp) {
    // find the move task
    for (Task<? extends Serializable> mvTsk : mvTasks) {
      MoveWork mvWork = (MoveWork) mvTsk.getWork();
      String srcDir = null;
      if (mvWork.getLoadFileWork() != null) {
        srcDir = mvWork.getLoadFileWork().getSourceDir();
      } else if (mvWork.getLoadTableWork() != null) {
        srcDir = mvWork.getLoadTableWork().getSourceDir();
      }

      if ((srcDir != null) && (srcDir.equalsIgnoreCase(fsOp.getConf().getDirName()))) {
        return mvTsk;
      }
    }
    return null;
  }
Пример #6
0
  private Task<MoveWork> findMoveTask(List<Task<MoveWork>> mvTasks, FileSinkOperator fsOp) {
    // find the move task
    for (Task<MoveWork> mvTsk : mvTasks) {
      MoveWork mvWork = mvTsk.getWork();
      String srcDir = null;
      if (mvWork.getLoadFileWork() != null) {
        srcDir = mvWork.getLoadFileWork().getSourceDir();
      } else if (mvWork.getLoadTableWork() != null) {
        srcDir = mvWork.getLoadTableWork().getSourceDir();
      }

      String fsOpDirName = fsOp.getConf().getFinalDirName();
      if ((srcDir != null) && (srcDir.equalsIgnoreCase(fsOpDirName))) {
        return mvTsk;
      }
    }
    return null;
  }
  @Override
  public ParseContext transform(ParseContext pCtx) throws SemanticException {

    // create a walker which walks the tree in a DFS manner while maintaining the
    // operator stack. The dispatcher generates the plan from the operator tree
    Map<Rule, NodeProcessor> opRules = new LinkedHashMap<Rule, NodeProcessor>();

    String FS = FileSinkOperator.getOperatorName() + "%";

    opRules.put(new RuleRegExp("Sorted Dynamic Partition", FS), getSortDynPartProc(pCtx));

    Dispatcher disp = new DefaultRuleDispatcher(null, opRules, null);
    GraphWalker ogw = new DefaultGraphWalker(disp);

    ArrayList<Node> topNodes = new ArrayList<Node>();
    topNodes.addAll(pCtx.getTopOps().values());
    ogw.startWalking(topNodes, null);

    return pCtx;
  }
Пример #8
0
  /**
   * Add the StatsTask as a dependent task of the MoveTask because StatsTask will change the
   * Table/Partition metadata. For atomicity, we should not change it before the data is actually
   * there done by MoveTask.
   *
   * @param nd the FileSinkOperator whose results are taken care of by the MoveTask.
   * @param mvTask The MoveTask that moves the FileSinkOperator's results.
   * @param currTask The MapRedTask that the FileSinkOperator belongs to.
   * @param hconf HiveConf
   */
  private void addStatsTask(
      FileSinkOperator nd, MoveTask mvTask, Task<? extends Serializable> currTask, HiveConf hconf) {

    MoveWork mvWork = ((MoveTask) mvTask).getWork();
    StatsWork statsWork = new StatsWork(mvWork.getLoadTableWork());
    MapredWork mrWork = (MapredWork) currTask.getWork();

    // AggKey in StatsWork is used for stats aggregation while StatsAggPrefix
    // in FileSinkDesc is used for stats publishing. They should be consistent.
    statsWork.setAggKey(((FileSinkOperator) nd).getConf().getStatsAggPrefix());
    Task<? extends Serializable> statsTask = TaskFactory.get(statsWork, hconf);

    // mark the MapredWork and FileSinkOperator for gathering stats
    nd.getConf().setGatherStats(true);
    mrWork.setGatheringStats(true);
    // mrWork.addDestinationTable(nd.getConf().getTableInfo().getTableName());

    // subscribe feeds from the MoveTask so that MoveTask can forward the list
    // of dynamic partition list to the StatsTask
    mvTask.addDependentTask(statsTask);
    statsTask.subscribeFeed(mvTask);
  }
Пример #9
0
  /**
   * Process the FileSink operator to generate a MoveTask if necessary.
   *
   * @param nd current FileSink operator
   * @param stack parent operators
   * @param opProcCtx
   * @param chDir whether the operator should be first output to a tmp dir and then merged to the
   *     final dir later
   * @return the final file name to which the FileSinkOperator should store.
   * @throws SemanticException
   */
  private String processFS(Node nd, Stack<Node> stack, NodeProcessorCtx opProcCtx, boolean chDir)
      throws SemanticException {

    // Is it the dummy file sink after the mapjoin
    FileSinkOperator fsOp = (FileSinkOperator) nd;
    if ((fsOp.getParentOperators().size() == 1)
        && (fsOp.getParentOperators().get(0) instanceof MapJoinOperator)) {
      return null;
    }

    GenMRProcContext ctx = (GenMRProcContext) opProcCtx;
    List<FileSinkOperator> seenFSOps = ctx.getSeenFileSinkOps();
    if (seenFSOps == null) {
      seenFSOps = new ArrayList<FileSinkOperator>();
    }
    if (!seenFSOps.contains(fsOp)) {
      seenFSOps.add(fsOp);
    }
    ctx.setSeenFileSinkOps(seenFSOps);

    Task<? extends Serializable> currTask = ctx.getCurrTask();

    // If the directory needs to be changed, send the new directory
    String dest = null;

    if (chDir) {
      dest = fsOp.getConf().getDirName();

      // generate the temporary file
      // it must be on the same file system as the current destination
      ParseContext parseCtx = ctx.getParseCtx();
      Context baseCtx = parseCtx.getContext();
      String tmpDir = baseCtx.getExternalTmpFileURI((new Path(dest)).toUri());

      fsOp.getConf().setDirName(tmpDir);
    }

    Task<? extends Serializable> mvTask = null;

    if (!chDir) {
      mvTask = findMoveTask(ctx.getMvTask(), fsOp);
    }

    Operator<? extends Serializable> currTopOp = ctx.getCurrTopOp();
    String currAliasId = ctx.getCurrAliasId();
    HashMap<Operator<? extends Serializable>, Task<? extends Serializable>> opTaskMap =
        ctx.getOpTaskMap();
    List<Operator<? extends Serializable>> seenOps = ctx.getSeenOps();
    List<Task<? extends Serializable>> rootTasks = ctx.getRootTasks();

    // Set the move task to be dependent on the current task
    if (mvTask != null) {
      currTask.addDependentTask(mvTask);
    }

    // In case of multi-table insert, the path to alias mapping is needed for
    // all the sources. Since there is no
    // reducer, treat it as a plan with null reducer
    // If it is a map-only job, the task needs to be processed
    if (currTopOp != null) {
      Task<? extends Serializable> mapTask = opTaskMap.get(null);
      if (mapTask == null) {
        assert (!seenOps.contains(currTopOp));
        seenOps.add(currTopOp);
        GenMapRedUtils.setTaskPlan(
            currAliasId, currTopOp, (MapredWork) currTask.getWork(), false, ctx);
        opTaskMap.put(null, currTask);
        rootTasks.add(currTask);
      } else {
        if (!seenOps.contains(currTopOp)) {
          seenOps.add(currTopOp);
          GenMapRedUtils.setTaskPlan(
              currAliasId, currTopOp, (MapredWork) mapTask.getWork(), false, ctx);
        }
        // mapTask and currTask should be merged by and join/union operator
        // (e.g., GenMRUnion1j) which has multiple topOps.
        assert mapTask == currTask
            : "mapTask.id = " + mapTask.getId() + "; currTask.id = " + currTask.getId();
      }

      return dest;
    }

    UnionOperator currUnionOp = ctx.getCurrUnionOp();

    if (currUnionOp != null) {
      opTaskMap.put(null, currTask);
      GenMapRedUtils.initUnionPlan(ctx, currTask, false);
      return dest;
    }

    AbstractMapJoinOperator<? extends MapJoinDesc> currMapJoinOp = ctx.getCurrMapJoinOp();

    if (currMapJoinOp != null) {
      opTaskMap.put(null, currTask);
      GenMRMapJoinCtx mjCtx = ctx.getMapJoinCtx(currMapJoinOp);
      MapredWork plan = (MapredWork) currTask.getWork();

      String taskTmpDir = mjCtx.getTaskTmpDir();
      TableDesc tt_desc = mjCtx.getTTDesc();
      assert plan.getPathToAliases().get(taskTmpDir) == null;
      plan.getPathToAliases().put(taskTmpDir, new ArrayList<String>());
      plan.getPathToAliases().get(taskTmpDir).add(taskTmpDir);
      plan.getPathToPartitionInfo().put(taskTmpDir, new PartitionDesc(tt_desc, null));
      plan.getAliasToWork().put(taskTmpDir, mjCtx.getRootMapJoinOp());
      return dest;
    }

    return dest;
  }
Пример #10
0
  /**
   * create a Map-only merge job with the following operators:
   *
   * @param fsInput
   * @param ctx
   * @param finalName MR job J0: ... | v FileSinkOperator_1 (fsInput) | v Merge job J1: | v
   *     TableScan (using CombineHiveInputFormat) (tsMerge) | v FileSinkOperator (fsMerge)
   *     <p>Here the pathToPartitionInfo & pathToAlias will remain the same, which means the paths
   *     do not contain the dynamic partitions (their parent). So after the dynamic partitions are
   *     created (after the first job finished before the moveTask or ConditionalTask start), we
   *     need to change the pathToPartitionInfo & pathToAlias to include the dynamic partition
   *     directories.
   */
  private void createMap4Merge(FileSinkOperator fsInput, GenMRProcContext ctx, String finalName) {

    //
    // 1. create the operator tree
    //
    ParseContext parseCtx = ctx.getParseCtx();
    FileSinkDesc fsInputDesc = fsInput.getConf();

    // Create a TableScan operator
    RowSchema inputRS = fsInput.getSchema();
    Operator<? extends Serializable> tsMerge = OperatorFactory.get(TableScanDesc.class, inputRS);

    // Create a FileSink operator
    TableDesc ts = (TableDesc) fsInputDesc.getTableInfo().clone();
    FileSinkDesc fsOutputDesc =
        new FileSinkDesc(
            finalName, ts, parseCtx.getConf().getBoolVar(HiveConf.ConfVars.COMPRESSRESULT));
    FileSinkOperator fsOutput =
        (FileSinkOperator) OperatorFactory.getAndMakeChild(fsOutputDesc, inputRS, tsMerge);

    // If the input FileSinkOperator is a dynamic partition enabled, the tsMerge input schema
    // needs to include the partition column, and the fsOutput should have
    // a DynamicPartitionCtx to indicate that it needs to dynamically partitioned.
    DynamicPartitionCtx dpCtx = fsInputDesc.getDynPartCtx();
    if (dpCtx != null && dpCtx.getNumDPCols() > 0) {
      // adding DP ColumnInfo to the RowSchema signature
      ArrayList<ColumnInfo> signature = inputRS.getSignature();
      String tblAlias = fsInputDesc.getTableInfo().getTableName();
      LinkedHashMap<String, String> colMap = new LinkedHashMap<String, String>();
      StringBuilder partCols = new StringBuilder();
      for (String dpCol : dpCtx.getDPColNames()) {
        ColumnInfo colInfo =
            new ColumnInfo(
                dpCol,
                TypeInfoFactory.stringTypeInfo, // all partition column type should be string
                tblAlias,
                true); // partition column is virtual column
        signature.add(colInfo);
        colMap.put(dpCol, dpCol); // input and output have the same column name
        partCols.append(dpCol).append('/');
      }
      partCols.setLength(partCols.length() - 1); // remove the last '/'
      inputRS.setSignature(signature);

      // create another DynamicPartitionCtx, which has a different input-to-DP column mapping
      DynamicPartitionCtx dpCtx2 = new DynamicPartitionCtx(dpCtx);
      dpCtx2.setInputToDPCols(colMap);
      fsOutputDesc.setDynPartCtx(dpCtx2);

      // update the FileSinkOperator to include partition columns
      fsInputDesc
          .getTableInfo()
          .getProperties()
          .setProperty(
              org.apache.hadoop.hive.metastore.api.Constants.META_TABLE_PARTITION_COLUMNS,
              partCols.toString()); // list of dynamic partition column names
    } else {
      // non-partitioned table
      fsInputDesc
          .getTableInfo()
          .getProperties()
          .remove(org.apache.hadoop.hive.metastore.api.Constants.META_TABLE_PARTITION_COLUMNS);
    }

    //
    // 2. Constructing a conditional task consisting of a move task and a map reduce task
    //
    MapRedTask currTask = (MapRedTask) ctx.getCurrTask();
    MoveWork dummyMv =
        new MoveWork(
            null,
            null,
            null,
            new LoadFileDesc(fsInputDesc.getDirName(), finalName, true, null, null),
            false);
    MapredWork cplan = createMergeTask(ctx.getConf(), tsMerge, fsInputDesc);
    // use CombineHiveInputFormat for map-only merging
    cplan.setInputformat("org.apache.hadoop.hive.ql.io.CombineHiveInputFormat");
    // NOTE: we should gather stats in MR1 rather than MR2 at merge job since we don't
    // know if merge MR2 will be triggered at execution time
    ConditionalTask cndTsk =
        createCondTask(ctx.getConf(), ctx.getCurrTask(), dummyMv, cplan, fsInputDesc.getDirName());

    // keep the dynamic partition context in conditional task resolver context
    ConditionalResolverMergeFilesCtx mrCtx =
        (ConditionalResolverMergeFilesCtx) cndTsk.getResolverCtx();
    mrCtx.setDPCtx(fsInputDesc.getDynPartCtx());

    //
    // 3. add the moveTask as the children of the conditional task
    //
    LinkMoveTask(ctx, fsOutput, cndTsk);
  }
Пример #11
0
  private void createMapReduce4Merge(FileSinkOperator fsOp, GenMRProcContext ctx, String finalName)
      throws SemanticException {
    Task<? extends Serializable> currTask = ctx.getCurrTask();
    RowSchema inputRS = fsOp.getSchema();

    // create a reduce Sink operator - key is the first column
    ArrayList<ExprNodeDesc> keyCols = new ArrayList<ExprNodeDesc>();
    keyCols.add(TypeCheckProcFactory.DefaultExprProcessor.getFuncExprNodeDesc("rand"));

    // value is all the columns in the FileSink operator input
    ArrayList<ExprNodeDesc> valueCols = new ArrayList<ExprNodeDesc>();
    for (ColumnInfo ci : inputRS.getSignature()) {
      valueCols.add(
          new ExprNodeColumnDesc(
              ci.getType(), ci.getInternalName(), ci.getTabAlias(), ci.getIsVirtualCol()));
    }

    // create a dummy tableScan operator
    Operator<? extends Serializable> tsMerge = OperatorFactory.get(TableScanDesc.class, inputRS);

    ArrayList<String> outputColumns = new ArrayList<String>();
    for (int i = 0; i < valueCols.size(); i++) {
      outputColumns.add(SemanticAnalyzer.getColumnInternalName(i));
    }

    ReduceSinkDesc rsDesc =
        PlanUtils.getReduceSinkDesc(
            new ArrayList<ExprNodeDesc>(), valueCols, outputColumns, false, -1, -1, -1);
    OperatorFactory.getAndMakeChild(rsDesc, inputRS, tsMerge);
    ParseContext parseCtx = ctx.getParseCtx();
    FileSinkDesc fsConf = fsOp.getConf();

    // Add the extract operator to get the value fields
    RowResolver out_rwsch = new RowResolver();
    RowResolver interim_rwsch = ctx.getParseCtx().getOpParseCtx().get(fsOp).getRowResolver();
    Integer pos = Integer.valueOf(0);
    for (ColumnInfo colInfo : interim_rwsch.getColumnInfos()) {
      String[] info = interim_rwsch.reverseLookup(colInfo.getInternalName());
      out_rwsch.put(
          info[0],
          info[1],
          new ColumnInfo(
              pos.toString(),
              colInfo.getType(),
              info[0],
              colInfo.getIsVirtualCol(),
              colInfo.isHiddenVirtualCol()));
      pos = Integer.valueOf(pos.intValue() + 1);
    }

    Operator<ExtractDesc> extract =
        OperatorFactory.getAndMakeChild(
            new ExtractDesc(
                new ExprNodeColumnDesc(
                    TypeInfoFactory.stringTypeInfo,
                    Utilities.ReduceField.VALUE.toString(),
                    "",
                    false)),
            new RowSchema(out_rwsch.getColumnInfos()));

    TableDesc ts = (TableDesc) fsConf.getTableInfo().clone();
    fsConf
        .getTableInfo()
        .getProperties()
        .remove(org.apache.hadoop.hive.metastore.api.Constants.META_TABLE_PARTITION_COLUMNS);

    FileSinkDesc newFSD =
        new FileSinkDesc(
            finalName, ts, parseCtx.getConf().getBoolVar(HiveConf.ConfVars.COMPRESSRESULT));
    FileSinkOperator newOutput =
        (FileSinkOperator) OperatorFactory.getAndMakeChild(newFSD, inputRS, extract);

    HiveConf conf = parseCtx.getConf();
    MapredWork cplan = createMergeTask(conf, tsMerge, fsConf);
    cplan.setReducer(extract);

    // NOTE: we should gather stats in MR1 (rather than the merge MR job)
    // since it is unknown if the merge MR will be triggered at execution time.

    MoveWork dummyMv =
        new MoveWork(
            null,
            null,
            null,
            new LoadFileDesc(fsConf.getDirName(), finalName, true, null, null),
            false);

    ConditionalTask cndTsk = createCondTask(conf, currTask, dummyMv, cplan, fsConf.getDirName());

    LinkMoveTask(ctx, newOutput, cndTsk);
  }
Пример #12
0
  /**
   * File Sink Operator encountered.
   *
   * @param nd the file sink operator encountered
   * @param opProcCtx context
   */
  public Object process(
      Node nd, Stack<Node> stack, NodeProcessorCtx opProcCtx, Object... nodeOutputs)
      throws SemanticException {
    GenMRProcContext ctx = (GenMRProcContext) opProcCtx;
    ParseContext parseCtx = ctx.getParseCtx();
    boolean chDir = false;
    Task<? extends Serializable> currTask = ctx.getCurrTask();
    FileSinkOperator fsOp = (FileSinkOperator) nd;
    boolean isInsertTable = // is INSERT OVERWRITE TABLE
        fsOp.getConf().getTableInfo().getTableName() != null
            && parseCtx.getQB().getParseInfo().isInsertToTable();
    HiveConf hconf = parseCtx.getConf();

    // Mark this task as a final map reduce task (ignoring the optional merge task)
    ((MapredWork) currTask.getWork()).setFinalMapRed(true);

    // If this file sink desc has been processed due to a linked file sink desc,
    // use that task
    Map<FileSinkDesc, Task<? extends Serializable>> fileSinkDescs = ctx.getLinkedFileDescTasks();
    if (fileSinkDescs != null) {
      Task<? extends Serializable> childTask = fileSinkDescs.get(fsOp.getConf());
      processLinkedFileDesc(ctx, childTask);
      return null;
    }

    // Has the user enabled merging of files for map-only jobs or for all jobs
    if ((ctx.getMvTask() != null) && (!ctx.getMvTask().isEmpty())) {
      List<Task<MoveWork>> mvTasks = ctx.getMvTask();

      // In case of unions or map-joins, it is possible that the file has
      // already been seen.
      // So, no need to attempt to merge the files again.
      if ((ctx.getSeenFileSinkOps() == null) || (!ctx.getSeenFileSinkOps().contains(nd))) {

        // no need of merging if the move is to a local file system
        MoveTask mvTask = (MoveTask) findMoveTask(mvTasks, fsOp);

        if (isInsertTable && hconf.getBoolVar(ConfVars.HIVESTATSAUTOGATHER)) {
          addStatsTask(fsOp, mvTask, currTask, parseCtx.getConf());
        }

        if ((mvTask != null) && !mvTask.isLocal() && fsOp.getConf().canBeMerged()) {
          if (fsOp.getConf().isLinkedFileSink()) {
            // If the user has HIVEMERGEMAPREDFILES set to false, the idea was the
            // number of reducers are few, so the number of files anyway are small.
            // However, with this optimization, we are increasing the number of files
            // possibly by a big margin. So, merge aggresively.
            if (hconf.getBoolVar(ConfVars.HIVEMERGEMAPFILES)
                || hconf.getBoolVar(ConfVars.HIVEMERGEMAPREDFILES)) {
              chDir = true;
            }
          } else {
            // There are separate configuration parameters to control whether to
            // merge for a map-only job
            // or for a map-reduce job
            MapredWork currWork = (MapredWork) currTask.getWork();
            boolean mergeMapOnly =
                hconf.getBoolVar(ConfVars.HIVEMERGEMAPFILES) && currWork.getReducer() == null;
            boolean mergeMapRed =
                hconf.getBoolVar(ConfVars.HIVEMERGEMAPREDFILES) && currWork.getReducer() != null;
            if (mergeMapOnly || mergeMapRed) {
              chDir = true;
            }
          }
        }
      }
    }

    String finalName = processFS(fsOp, stack, opProcCtx, chDir);

    if (chDir) {
      // Merge the files in the destination table/partitions by creating Map-only merge job
      // If underlying data is RCFile or OrcFile a BlockMerge task would be created.
      LOG.info("using CombineHiveInputformat for the merge job");
      createMRWorkForMergingFiles(fsOp, ctx, finalName);
    }

    FileSinkDesc fileSinkDesc = fsOp.getConf();
    if (fileSinkDesc.isLinkedFileSink()) {
      Map<FileSinkDesc, Task<? extends Serializable>> linkedFileDescTasks =
          ctx.getLinkedFileDescTasks();
      if (linkedFileDescTasks == null) {
        linkedFileDescTasks = new HashMap<FileSinkDesc, Task<? extends Serializable>>();
        ctx.setLinkedFileDescTasks(linkedFileDescTasks);
      }

      // The child tasks may be null in case of a select
      if ((currTask.getChildTasks() != null) && (currTask.getChildTasks().size() == 1)) {
        for (FileSinkDesc fileDesc : fileSinkDesc.getLinkedFileSinkDesc()) {
          linkedFileDescTasks.put(fileDesc, currTask.getChildTasks().get(0));
        }
      }
    }

    return null;
  }
Пример #13
0
  /**
   * Process the FileSink operator to generate a MoveTask if necessary.
   *
   * @param fsOp current FileSink operator
   * @param stack parent operators
   * @param opProcCtx
   * @param chDir whether the operator should be first output to a tmp dir and then merged to the
   *     final dir later
   * @return the final file name to which the FileSinkOperator should store.
   * @throws SemanticException
   */
  private String processFS(
      FileSinkOperator fsOp, Stack<Node> stack, NodeProcessorCtx opProcCtx, boolean chDir)
      throws SemanticException {

    GenMRProcContext ctx = (GenMRProcContext) opProcCtx;
    List<FileSinkOperator> seenFSOps = ctx.getSeenFileSinkOps();
    if (seenFSOps == null) {
      seenFSOps = new ArrayList<FileSinkOperator>();
    }
    if (!seenFSOps.contains(fsOp)) {
      seenFSOps.add(fsOp);
    }
    ctx.setSeenFileSinkOps(seenFSOps);

    Task<? extends Serializable> currTask = ctx.getCurrTask();

    // If the directory needs to be changed, send the new directory
    String dest = null;

    if (chDir) {
      dest = fsOp.getConf().getFinalDirName();

      // generate the temporary file
      // it must be on the same file system as the current destination
      ParseContext parseCtx = ctx.getParseCtx();
      Context baseCtx = parseCtx.getContext();
      String tmpDir = baseCtx.getExternalTmpFileURI((new Path(dest)).toUri());

      FileSinkDesc fileSinkDesc = fsOp.getConf();
      // Change all the linked file sink descriptors
      if (fileSinkDesc.isLinkedFileSink()) {
        for (FileSinkDesc fsConf : fileSinkDesc.getLinkedFileSinkDesc()) {
          String fileName = Utilities.getFileNameFromDirName(fsConf.getDirName());
          fsConf.setParentDir(tmpDir);
          fsConf.setDirName(tmpDir + Path.SEPARATOR + fileName);
        }
      } else {
        fileSinkDesc.setDirName(tmpDir);
      }
    }

    Task<MoveWork> mvTask = null;

    if (!chDir) {
      mvTask = findMoveTask(ctx.getMvTask(), fsOp);
    }

    Operator<? extends OperatorDesc> currTopOp = ctx.getCurrTopOp();
    String currAliasId = ctx.getCurrAliasId();
    HashMap<Operator<? extends OperatorDesc>, Task<? extends Serializable>> opTaskMap =
        ctx.getOpTaskMap();
    List<Operator<? extends OperatorDesc>> seenOps = ctx.getSeenOps();
    List<Task<? extends Serializable>> rootTasks = ctx.getRootTasks();

    // Set the move task to be dependent on the current task
    if (mvTask != null) {
      addDependentMoveTasks(ctx, mvTask, currTask);
    }

    // In case of multi-table insert, the path to alias mapping is needed for
    // all the sources. Since there is no
    // reducer, treat it as a plan with null reducer
    // If it is a map-only job, the task needs to be processed
    if (currTopOp != null) {
      Task<? extends Serializable> mapTask = opTaskMap.get(null);
      if (mapTask == null) {
        if (!seenOps.contains(currTopOp)) {
          seenOps.add(currTopOp);
          GenMapRedUtils.setTaskPlan(
              currAliasId, currTopOp, (MapredWork) currTask.getWork(), false, ctx);
        }
        opTaskMap.put(null, currTask);
        if (!rootTasks.contains(currTask)
            && (currTask.getParentTasks() == null || currTask.getParentTasks().isEmpty())) {
          rootTasks.add(currTask);
        }
      } else {
        if (!seenOps.contains(currTopOp)) {
          seenOps.add(currTopOp);
          GenMapRedUtils.setTaskPlan(
              currAliasId, currTopOp, (MapredWork) mapTask.getWork(), false, ctx);
        } else {
          UnionOperator currUnionOp = ctx.getCurrUnionOp();
          if (currUnionOp != null) {
            opTaskMap.put(null, currTask);
            ctx.setCurrTopOp(null);
            GenMapRedUtils.initUnionPlan(ctx, currUnionOp, currTask, false);
            return dest;
          }
        }
        // mapTask and currTask should be merged by and join/union operator
        // (e.g., GenMRUnion1) which has multiple topOps.
        // assert mapTask == currTask : "mapTask.id = " + mapTask.getId()
        // + "; currTask.id = " + currTask.getId();
      }

      return dest;
    }

    UnionOperator currUnionOp = ctx.getCurrUnionOp();

    if (currUnionOp != null) {
      opTaskMap.put(null, currTask);
      GenMapRedUtils.initUnionPlan(ctx, currUnionOp, currTask, false);
      return dest;
    }

    return dest;
  }
Пример #14
0
  /**
   * @param fsInput The FileSink operator.
   * @param ctx The MR processing context.
   * @param finalName the final destination path the merge job should output.
   * @throws SemanticException
   *     <p>create a Map-only merge job using CombineHiveInputFormat for all partitions with
   *     following operators: MR job J0: ... | v FileSinkOperator_1 (fsInput) | v Merge job J1: | v
   *     TableScan (using CombineHiveInputFormat) (tsMerge) | v FileSinkOperator (fsMerge)
   *     <p>Here the pathToPartitionInfo & pathToAlias will remain the same, which means the paths
   *     do not contain the dynamic partitions (their parent). So after the dynamic partitions are
   *     created (after the first job finished before the moveTask or ConditionalTask start), we
   *     need to change the pathToPartitionInfo & pathToAlias to include the dynamic partition
   *     directories.
   */
  private void createMRWorkForMergingFiles(
      FileSinkOperator fsInput, GenMRProcContext ctx, String finalName) throws SemanticException {

    //
    // 1. create the operator tree
    //
    HiveConf conf = ctx.getParseCtx().getConf();
    FileSinkDesc fsInputDesc = fsInput.getConf();

    // Create a TableScan operator
    RowSchema inputRS = fsInput.getSchema();
    Operator<? extends OperatorDesc> tsMerge = OperatorFactory.get(TableScanDesc.class, inputRS);

    // Create a FileSink operator
    TableDesc ts = (TableDesc) fsInputDesc.getTableInfo().clone();
    FileSinkDesc fsOutputDesc =
        new FileSinkDesc(finalName, ts, conf.getBoolVar(ConfVars.COMPRESSRESULT));
    FileSinkOperator fsOutput =
        (FileSinkOperator) OperatorFactory.getAndMakeChild(fsOutputDesc, inputRS, tsMerge);

    // If the input FileSinkOperator is a dynamic partition enabled, the tsMerge input schema
    // needs to include the partition column, and the fsOutput should have
    // a DynamicPartitionCtx to indicate that it needs to dynamically partitioned.
    DynamicPartitionCtx dpCtx = fsInputDesc.getDynPartCtx();
    if (dpCtx != null && dpCtx.getNumDPCols() > 0) {
      // adding DP ColumnInfo to the RowSchema signature
      ArrayList<ColumnInfo> signature = inputRS.getSignature();
      String tblAlias = fsInputDesc.getTableInfo().getTableName();
      LinkedHashMap<String, String> colMap = new LinkedHashMap<String, String>();
      StringBuilder partCols = new StringBuilder();
      for (String dpCol : dpCtx.getDPColNames()) {
        ColumnInfo colInfo =
            new ColumnInfo(
                dpCol,
                TypeInfoFactory.stringTypeInfo, // all partition column type should be string
                tblAlias,
                true); // partition column is virtual column
        signature.add(colInfo);
        colMap.put(dpCol, dpCol); // input and output have the same column name
        partCols.append(dpCol).append('/');
      }
      partCols.setLength(partCols.length() - 1); // remove the last '/'
      inputRS.setSignature(signature);

      // create another DynamicPartitionCtx, which has a different input-to-DP column mapping
      DynamicPartitionCtx dpCtx2 = new DynamicPartitionCtx(dpCtx);
      dpCtx2.setInputToDPCols(colMap);
      fsOutputDesc.setDynPartCtx(dpCtx2);

      // update the FileSinkOperator to include partition columns
      fsInputDesc
          .getTableInfo()
          .getProperties()
          .setProperty(
              org.apache
                  .hadoop
                  .hive
                  .metastore
                  .api
                  .hive_metastoreConstants
                  .META_TABLE_PARTITION_COLUMNS,
              partCols.toString()); // list of dynamic partition column names
    } else {
      // non-partitioned table
      fsInputDesc
          .getTableInfo()
          .getProperties()
          .remove(
              org.apache
                  .hadoop
                  .hive
                  .metastore
                  .api
                  .hive_metastoreConstants
                  .META_TABLE_PARTITION_COLUMNS);
    }

    //
    // 2. Constructing a conditional task consisting of a move task and a map reduce task
    //
    MoveWork dummyMv =
        new MoveWork(
            null,
            null,
            null,
            new LoadFileDesc(fsInputDesc.getFinalDirName(), finalName, true, null, null),
            false);
    MapredWork cplan;

    if (conf.getBoolVar(ConfVars.HIVEMERGERCFILEBLOCKLEVEL)
        && fsInputDesc.getTableInfo().getInputFileFormatClass().equals(RCFileInputFormat.class)) {

      // Check if InputFormatClass is valid
      String inputFormatClass = conf.getVar(ConfVars.HIVEMERGERCFILEINPUTFORMATBLOCKLEVEL);
      try {
        Class c = (Class<? extends InputFormat>) Class.forName(inputFormatClass);

        LOG.info("RCFile format- Using block level merge");
        cplan =
            createBlockMergeTask(
                fsInputDesc,
                finalName,
                dpCtx != null && dpCtx.getNumDPCols() > 0,
                RCFileMergeMapper.class,
                RCFileInputFormat.class,
                RCFileBlockMergeInputFormat.class);
      } catch (ClassNotFoundException e) {
        String msg = "Illegal input format class: " + inputFormatClass;
        throw new SemanticException(msg);
      }

    } else if (conf.getBoolVar(ConfVars.HIVEMERGEORCBLOCKLEVEL)
        && fsInputDesc.getTableInfo().getInputFileFormatClass().equals(OrcInputFormat.class)) {

      // Check if InputFormatClass is valid
      String inputFormatClass = conf.getVar(ConfVars.HIVEMERGEORCINPUTFORMATBLOCKLEVEL);
      try {
        Class c = (Class<? extends InputFormat>) Class.forName(inputFormatClass);

        LOG.info("ORCFile format- Using block level merge");
        cplan =
            createBlockMergeTask(
                fsInputDesc,
                finalName,
                dpCtx != null && dpCtx.getNumDPCols() > 0,
                OrcMergeMapper.class,
                OrcInputFormat.class,
                OrcBlockMergeInputFormat.class);
      } catch (ClassNotFoundException e) {
        String msg = "Illegal input format class: " + inputFormatClass;
        throw new SemanticException(msg);
      }

    } else {
      cplan = createMRWorkForMergingFiles(conf, tsMerge, fsInputDesc);
      // use CombineHiveInputFormat for map-only merging
    }
    cplan.setInputformat("org.apache.hadoop.hive.ql.io.CombineHiveInputFormat");
    // NOTE: we should gather stats in MR1 rather than MR2 at merge job since we don't
    // know if merge MR2 will be triggered at execution time
    ConditionalTask cndTsk =
        createCondTask(conf, ctx.getCurrTask(), dummyMv, cplan, fsInputDesc.getFinalDirName());

    // keep the dynamic partition context in conditional task resolver context
    ConditionalResolverMergeFilesCtx mrCtx =
        (ConditionalResolverMergeFilesCtx) cndTsk.getResolverCtx();
    mrCtx.setDPCtx(fsInputDesc.getDynPartCtx());
    mrCtx.setLbCtx(fsInputDesc.getLbCtx());

    //
    // 3. add the moveTask as the children of the conditional task
    //
    linkMoveTask(ctx, fsOutput, cndTsk);
  }
    @Override
    public Object process(
        Node nd, Stack<Node> stack, NodeProcessorCtx procCtx, Object... nodeOutputs)
        throws SemanticException {

      // If the reduce sink has not been introduced due to bucketing/sorting, ignore it
      FileSinkOperator fsOp = (FileSinkOperator) nd;
      ReduceSinkOperator rsOp =
          (ReduceSinkOperator) fsOp.getParentOperators().get(0).getParentOperators().get(0);

      List<ReduceSinkOperator> rsOps =
          pGraphContext.getReduceSinkOperatorsAddedByEnforceBucketingSorting();
      // nothing to do
      if ((rsOps != null) && (!rsOps.contains(rsOp))) {
        return null;
      }

      // Don't do this optimization with updates or deletes
      if (pGraphContext.getContext().getAcidOperation() == AcidUtils.Operation.UPDATE
          || pGraphContext.getContext().getAcidOperation() == AcidUtils.Operation.DELETE) {
        return null;
      }

      if (stack.get(0) instanceof TableScanOperator) {
        TableScanOperator tso = ((TableScanOperator) stack.get(0));
        if (SemanticAnalyzer.isAcidTable(tso.getConf().getTableMetadata())) {
          /*ACID tables have complex directory layout and require merging of delta files
           * on read thus we should not try to read bucket files directly*/
          return null;
        }
      }
      // Support for dynamic partitions can be added later
      if (fsOp.getConf().getDynPartCtx() != null) {
        return null;
      }

      // No conversion is possible for the reduce keys
      for (ExprNodeDesc keyCol : rsOp.getConf().getKeyCols()) {
        if (!(keyCol instanceof ExprNodeColumnDesc)) {
          return null;
        }
      }

      Table destTable = fsOp.getConf().getTable();
      if (destTable == null) {
        return null;
      }
      int numBucketsDestination = destTable.getNumBuckets();

      // Get the positions for sorted and bucketed columns
      // For sorted columns, also get the order (ascending/descending) - that should
      // also match for this to be converted to a map-only job.
      // Get the positions for sorted and bucketed columns
      // For sorted columns, also get the order (ascending/descending) - that should
      // also match for this to be converted to a map-only job.
      List<Integer> bucketPositions =
          getBucketPositions(destTable.getBucketCols(), destTable.getCols());
      ObjectPair<List<Integer>, List<Integer>> sortOrderPositions =
          getSortPositionsOrder(destTable.getSortCols(), destTable.getCols());
      List<Integer> sortPositions = sortOrderPositions.getFirst();
      List<Integer> sortOrder = sortOrderPositions.getSecond();
      boolean useBucketSortPositions = true;

      // Only selects and filters are allowed
      Operator<? extends OperatorDesc> op = rsOp;
      // TableScan will also be followed by a Select Operator. Find the expressions for the
      // bucketed/sorted columns for the destination table
      List<ExprNodeColumnDesc> sourceTableBucketCols = new ArrayList<ExprNodeColumnDesc>();
      List<ExprNodeColumnDesc> sourceTableSortCols = new ArrayList<ExprNodeColumnDesc>();
      op = op.getParentOperators().get(0);

      while (true) {
        if (!(op instanceof TableScanOperator)
            && !(op instanceof FilterOperator)
            && !(op instanceof SelectOperator)
            && !(op instanceof SMBMapJoinOperator)) {
          return null;
        }

        if (op instanceof SMBMapJoinOperator) {
          // Bucketing and sorting keys should exactly match
          if (!(bucketPositions.equals(sortPositions))) {
            return null;
          }
          SMBMapJoinOperator smbOp = (SMBMapJoinOperator) op;
          SMBJoinDesc smbJoinDesc = smbOp.getConf();
          int posBigTable = smbJoinDesc.getPosBigTable();

          // join keys dont match the bucketing keys
          List<ExprNodeDesc> keysBigTable = smbJoinDesc.getKeys().get((byte) posBigTable);
          if (keysBigTable.size() != bucketPositions.size()) {
            return null;
          }

          if (!validateSMBJoinKeys(
              smbJoinDesc, sourceTableBucketCols, sourceTableSortCols, sortOrder)) {
            return null;
          }

          sourceTableBucketCols.clear();
          sourceTableSortCols.clear();
          useBucketSortPositions = false;

          for (ExprNodeDesc keyBigTable : keysBigTable) {
            if (!(keyBigTable instanceof ExprNodeColumnDesc)) {
              return null;
            }
            sourceTableBucketCols.add((ExprNodeColumnDesc) keyBigTable);
            sourceTableSortCols.add((ExprNodeColumnDesc) keyBigTable);
          }

          // since it is a sort-merge join, only follow the big table
          op = op.getParentOperators().get(posBigTable);
        } else {
          // nothing to be done for filters - the output schema does not change.
          if (op instanceof TableScanOperator) {
            assert !useBucketSortPositions;
            TableScanOperator ts = (TableScanOperator) op;
            Table srcTable = ts.getConf().getTableMetadata();

            // Find the positions of the bucketed columns in the table corresponding
            // to the select list.
            // Consider the following scenario:
            // T1(key, value1, value2) bucketed/sorted by key into 2 buckets
            // T2(dummy, key, value1, value2) bucketed/sorted by key into 2 buckets
            // A query like: insert overwrite table T2 select 1, key, value1, value2 from T1
            // should be optimized.

            // Start with the destination: T2, bucketed/sorted position is [1]
            // At the source T1, the column corresponding to that position is [key], which
            // maps to column [0] of T1, which is also bucketed/sorted into the same
            // number of buckets
            List<Integer> newBucketPositions = new ArrayList<Integer>();
            for (int pos = 0; pos < bucketPositions.size(); pos++) {
              ExprNodeColumnDesc col = sourceTableBucketCols.get(pos);
              String colName = col.getColumn();
              int bucketPos = findColumnPosition(srcTable.getCols(), colName);
              if (bucketPos < 0) {
                return null;
              }
              newBucketPositions.add(bucketPos);
            }

            // Find the positions/order of the sorted columns in the table corresponding
            // to the select list.
            List<Integer> newSortPositions = new ArrayList<Integer>();
            for (int pos = 0; pos < sortPositions.size(); pos++) {
              ExprNodeColumnDesc col = sourceTableSortCols.get(pos);
              String colName = col.getColumn();
              int sortPos = findColumnPosition(srcTable.getCols(), colName);
              if (sortPos < 0) {
                return null;
              }
              newSortPositions.add(sortPos);
            }

            if (srcTable.isPartitioned()) {
              PrunedPartitionList prunedParts =
                  pGraphContext.getPrunedPartitions(srcTable.getTableName(), ts);
              List<Partition> partitions = prunedParts.getNotDeniedPartns();

              // Support for dynamic partitions can be added later
              // The following is not optimized:
              // insert overwrite table T1(ds='1', hr) select key, value, hr from T2 where ds = '1';
              // where T1 and T2 are bucketed by the same keys and partitioned by ds. hr
              if ((partitions == null) || (partitions.isEmpty()) || (partitions.size() > 1)) {
                return null;
              }
              for (Partition partition : partitions) {
                if (!checkPartition(
                    partition,
                    newBucketPositions,
                    newSortPositions,
                    sortOrder,
                    numBucketsDestination)) {
                  return null;
                }
              }

              removeReduceSink(
                  rsOp, (TableScanOperator) op, fsOp, partitions.get(0).getSortedPaths());
              return null;
            } else {
              if (!checkTable(
                  srcTable,
                  newBucketPositions,
                  newSortPositions,
                  sortOrder,
                  numBucketsDestination)) {
                return null;
              }

              removeReduceSink(rsOp, (TableScanOperator) op, fsOp, srcTable.getSortedPaths());
              return null;
            }
          }
          // None of the operators is changing the positions
          else if (op instanceof SelectOperator) {
            SelectOperator selectOp = (SelectOperator) op;
            SelectDesc selectDesc = selectOp.getConf();

            // Iterate backwards, from the destination table to the top of the tree
            // Based on the output column names, get the new columns.
            if (!useBucketSortPositions) {
              bucketPositions.clear();
              sortPositions.clear();
              List<String> outputColumnNames = selectDesc.getOutputColumnNames();

              for (ExprNodeColumnDesc col : sourceTableBucketCols) {
                String colName = col.getColumn();
                int colPos = outputColumnNames.indexOf(colName);
                if (colPos < 0) {
                  return null;
                }
                bucketPositions.add(colPos);
              }

              for (ExprNodeColumnDesc col : sourceTableSortCols) {
                String colName = col.getColumn();
                int colPos = outputColumnNames.indexOf(colName);
                if (colPos < 0) {
                  return null;
                }
                sortPositions.add(colPos);
              }
            }

            // There may be multiple selects - chose the one closest to the table
            sourceTableBucketCols.clear();
            sourceTableSortCols.clear();

            // Only columns can be selected for both sorted and bucketed positions
            for (int pos : bucketPositions) {
              ExprNodeDesc selectColList = selectDesc.getColList().get(pos);
              if (!(selectColList instanceof ExprNodeColumnDesc)) {
                return null;
              }
              sourceTableBucketCols.add((ExprNodeColumnDesc) selectColList);
            }

            for (int pos : sortPositions) {
              ExprNodeDesc selectColList = selectDesc.getColList().get(pos);
              if (!(selectColList instanceof ExprNodeColumnDesc)) {
                return null;
              }
              sourceTableSortCols.add((ExprNodeColumnDesc) selectColList);
            }

            useBucketSortPositions = false;
          }
          op = op.getParentOperators().get(0);
        }
      }
    }
    @Override
    public Object process(
        Node nd, Stack<Node> stack, NodeProcessorCtx procCtx, Object... nodeOutputs)
        throws SemanticException {

      // introduce RS and EX before FS. If the operator tree already contains
      // RS then ReduceSinkDeDuplication optimization should merge them
      FileSinkOperator fsOp = (FileSinkOperator) nd;

      LOG.info("Sorted dynamic partitioning optimization kicked in..");

      // if not dynamic partitioning then bail out
      if (fsOp.getConf().getDynPartCtx() == null) {
        LOG.debug(
            "Bailing out of sort dynamic partition optimization as dynamic partitioning context is null");
        return null;
      }

      // if list bucketing then bail out
      ListBucketingCtx lbCtx = fsOp.getConf().getLbCtx();
      if (lbCtx != null
          && !lbCtx.getSkewedColNames().isEmpty()
          && !lbCtx.getSkewedColValues().isEmpty()) {
        LOG.debug(
            "Bailing out of sort dynamic partition optimization as list bucketing is enabled");
        return null;
      }

      Table destTable = fsOp.getConf().getTable();
      if (destTable == null) {
        LOG.debug(
            "Bailing out of sort dynamic partition optimization as destination table is null");
        return null;
      }

      // unlink connection between FS and its parent
      Operator<? extends OperatorDesc> fsParent = fsOp.getParentOperators().get(0);
      // if all dp columns got constant folded then disable this optimization
      if (allStaticPartitions(fsParent, fsOp.getConf().getDynPartCtx())) {
        LOG.debug(
            "Bailing out of sorted dynamic partition optimizer as all dynamic partition"
                + " columns got constant folded (static partitioning)");
        return null;
      }

      // if RS is inserted by enforce bucketing or sorting, we need to remove it
      // since ReduceSinkDeDuplication will not merge them to single RS.
      // RS inserted by enforce bucketing/sorting will have bucketing column in
      // reduce sink key whereas RS inserted by this optimization will have
      // partition columns followed by bucket number followed by sort columns in
      // the reduce sink key. Since both key columns are not prefix subset
      // ReduceSinkDeDuplication will not merge them together resulting in 2 MR jobs.
      // To avoid that we will remove the RS (and EX) inserted by enforce bucketing/sorting.
      if (!removeRSInsertedByEnforceBucketing(fsOp)) {
        LOG.debug(
            "Bailing out of sort dynamic partition optimization as some partition columns "
                + "got constant folded.");
        return null;
      }

      // unlink connection between FS and its parent
      fsParent = fsOp.getParentOperators().get(0);
      fsParent.getChildOperators().clear();

      DynamicPartitionCtx dpCtx = fsOp.getConf().getDynPartCtx();
      int numBuckets = destTable.getNumBuckets();

      // if enforce bucketing/sorting is disabled numBuckets will not be set.
      // set the number of buckets here to ensure creation of empty buckets
      dpCtx.setNumBuckets(numBuckets);

      // Get the positions for partition, bucket and sort columns
      List<Integer> bucketPositions =
          getBucketPositions(destTable.getBucketCols(), destTable.getCols());
      List<Integer> sortPositions = null;
      List<Integer> sortOrder = null;
      ArrayList<ExprNodeDesc> bucketColumns;
      if (fsOp.getConf().getWriteType() == AcidUtils.Operation.UPDATE
          || fsOp.getConf().getWriteType() == AcidUtils.Operation.DELETE) {
        // When doing updates and deletes we always want to sort on the rowid because the ACID
        // reader will expect this sort order when doing reads.  So
        // ignore whatever comes from the table and enforce this sort order instead.
        sortPositions = Arrays.asList(0);
        sortOrder = Arrays.asList(1); // 1 means asc, could really use enum here in the thrift if
        bucketColumns =
            new ArrayList<>(); // Bucketing column is already present in ROW__ID, which is specially
                               // handled in ReduceSink
      } else {
        if (!destTable.getSortCols().isEmpty()) {
          // Sort columns specified by table
          sortPositions = getSortPositions(destTable.getSortCols(), destTable.getCols());
          sortOrder = getSortOrders(destTable.getSortCols(), destTable.getCols());
        } else {
          // Infer sort columns from operator tree
          sortPositions = Lists.newArrayList();
          sortOrder = Lists.newArrayList();
          inferSortPositions(fsParent, sortPositions, sortOrder);
        }
        List<ColumnInfo> colInfos = fsParent.getSchema().getSignature();
        bucketColumns = getPositionsToExprNodes(bucketPositions, colInfos);
      }
      List<Integer> sortNullOrder = new ArrayList<Integer>();
      for (int order : sortOrder) {
        sortNullOrder.add(order == 1 ? 0 : 1); // for asc, nulls first; for desc, nulls last
      }
      LOG.debug("Got sort order");
      for (int i : sortPositions) LOG.debug("sort position " + i);
      for (int i : sortOrder) LOG.debug("sort order " + i);
      for (int i : sortNullOrder) LOG.debug("sort null order " + i);
      List<Integer> partitionPositions = getPartitionPositions(dpCtx, fsParent.getSchema());

      // update file sink descriptor
      fsOp.getConf().setMultiFileSpray(false);
      fsOp.getConf().setNumFiles(1);
      fsOp.getConf().setTotalFiles(1);

      ArrayList<ColumnInfo> parentCols = Lists.newArrayList(fsParent.getSchema().getSignature());
      ArrayList<ExprNodeDesc> allRSCols = Lists.newArrayList();
      for (ColumnInfo ci : parentCols) {
        allRSCols.add(new ExprNodeColumnDesc(ci));
      }

      // Create ReduceSink operator
      ReduceSinkOperator rsOp =
          getReduceSinkOp(
              partitionPositions,
              sortPositions,
              sortOrder,
              sortNullOrder,
              allRSCols,
              bucketColumns,
              numBuckets,
              fsParent,
              fsOp.getConf().getWriteType());

      List<ExprNodeDesc> descs = new ArrayList<ExprNodeDesc>(allRSCols.size());
      List<String> colNames = new ArrayList<String>();
      String colName;
      for (int i = 0; i < allRSCols.size(); i++) {
        ExprNodeDesc col = allRSCols.get(i);
        colName = col.getExprString();
        colNames.add(colName);
        if (partitionPositions.contains(i) || sortPositions.contains(i)) {
          descs.add(
              new ExprNodeColumnDesc(
                  col.getTypeInfo(), ReduceField.KEY.toString() + "." + colName, null, false));
        } else {
          descs.add(
              new ExprNodeColumnDesc(
                  col.getTypeInfo(), ReduceField.VALUE.toString() + "." + colName, null, false));
        }
      }
      RowSchema selRS = new RowSchema(fsParent.getSchema());
      if (!bucketColumns.isEmpty()
          || fsOp.getConf().getWriteType() == Operation.DELETE
          || fsOp.getConf().getWriteType() == Operation.UPDATE) {
        descs.add(
            new ExprNodeColumnDesc(
                TypeInfoFactory.stringTypeInfo,
                ReduceField.KEY.toString() + ".'" + BUCKET_NUMBER_COL_NAME + "'",
                null,
                false));
        colNames.add("'" + BUCKET_NUMBER_COL_NAME + "'");
        ColumnInfo ci =
            new ColumnInfo(
                BUCKET_NUMBER_COL_NAME,
                TypeInfoFactory.stringTypeInfo,
                selRS.getSignature().get(0).getTabAlias(),
                true,
                true);
        selRS.getSignature().add(ci);
        fsParent.getSchema().getSignature().add(ci);
      }
      // Create SelectDesc
      SelectDesc selConf = new SelectDesc(descs, colNames);

      // Create Select Operator
      SelectOperator selOp = (SelectOperator) OperatorFactory.getAndMakeChild(selConf, selRS, rsOp);

      // link SEL to FS
      fsOp.getParentOperators().clear();
      fsOp.getParentOperators().add(selOp);
      selOp.getChildOperators().add(fsOp);

      // Set if partition sorted or partition bucket sorted
      fsOp.getConf().setDpSortState(FileSinkDesc.DPSortState.PARTITION_SORTED);
      if (bucketColumns.size() > 0
          || fsOp.getConf().getWriteType() == Operation.DELETE
          || fsOp.getConf().getWriteType() == Operation.UPDATE) {
        fsOp.getConf().setDpSortState(FileSinkDesc.DPSortState.PARTITION_BUCKET_SORTED);
      }

      // update partition column info in FS descriptor
      fsOp.getConf().setPartitionCols(rsOp.getConf().getPartitionCols());

      LOG.info(
          "Inserted "
              + rsOp.getOperatorId()
              + " and "
              + selOp.getOperatorId()
              + " as parent of "
              + fsOp.getOperatorId()
              + " and child of "
              + fsParent.getOperatorId());

      parseCtx.setReduceSinkAddedBySortedDynPartition(true);
      return null;
    }