/** {@inheritDoc} */
  @Override
  public <T extends Entity> T create(T targetEntity, T current, Topology<T> topology) {
    T bestEntity = Topologies.getBestEntity(topology);
    List<T> participants =
        Selection.copyOf(topology)
            .exclude(targetEntity, bestEntity, current)
            .orderBy(new RandomArrangement())
            .select(Samples.first((int) numberOfDifferenceVectors.getParameter()).unique());
    Vector differenceVector = determineDistanceVector(participants);

    Vector targetVector =
        ((Vector) targetEntity.getCandidateSolution())
            .multiply(1 - greedynessParameter.getParameter());
    Vector bestVector =
        ((Vector) bestEntity.getCandidateSolution()).multiply(greedynessParameter.getParameter());

    Vector trialVector =
        bestVector.plus(
            targetVector.plus(differenceVector.multiply(scaleParameter.getParameter())));

    T trialEntity = (T) current.getClone();
    trialEntity.setCandidateSolution(trialVector);

    return trialEntity;
  }
  /**
   * Calculate the {@linkplain Vector} that is the resultant of several difference vectors.
   *
   * @param participants The {@linkplain Entity} list to create the difference vectors from. It is
   *     very important to note that the {@linkplain Entity} objects within this list should not
   *     contain duplicates. If duplicates are contained, this will severely reduce the diversity of
   *     the population as not all entities will be considered.
   * @return A {@linkplain Vector} representing the resultant of all calculated difference vectors.
   */
  protected Vector determineDistanceVector(List<Entity> participants) {
    RandomProvider random = new MersenneTwister();
    Vector distanceVector = Vector.fill(0.0, participants.get(0).getCandidateSolution().size());
    Iterator<Entity> iterator;
    int number = Double.valueOf(this.numberOfDifferenceVectors.getParameter()).intValue();
    List<Entity> currentParticipants;

    Vector first, second;
    double difference;

    for (int d = 0; d < distanceVector.size(); d++) {
      // get random participants for this dimension
      currentParticipants =
          (List<Entity>)
              Selection.copyOf(participants)
                  .orderBy(new RandomArrangement(random))
                  .select(Samples.first(number));
      iterator = currentParticipants.iterator();

      while (iterator.hasNext()) {
        first = (Vector) iterator.next().getCandidateSolution();
        second = (Vector) iterator.next().getCandidateSolution();

        difference = first.doubleValueOf(d) - second.doubleValueOf(d);

        distanceVector.setReal(d, distanceVector.get(d).doubleValue() + difference);
      }
    }

    return distanceVector;
  }
Пример #3
0
  /** {@inheritDoc} */
  @Override
  public <T extends Entity> T create(T targetEntity, T current, fj.data.List<T> topology) {
    int number = Double.valueOf(this.numberOfDifferenceVectors.getParameter()).intValue();
    List<T> participants =
        Selection.copyOf(topology)
            .exclude(targetEntity, current)
            .orderBy(new RandomArrangement())
            .select(Samples.first(number).unique());
    Vector differenceVector = determineDistanceVector(participants);

    Vector targetVector = (Vector) targetEntity.getCandidateSolution();
    Vector trialVector =
        targetVector.plus(
            differenceVector.multiply(
                new P1<Number>() {
                  @Override
                  public Number _1() {
                    return scaleParameter.getParameter();
                  }
                }));

    T trialEntity = (T) current.getClone();
    trialEntity.setCandidateSolution(trialVector);

    return trialEntity;
  }
 /**
  * Reevaluate a specified percentage of the given entities.
  *
  * @param entities a {@link List} of entities that should be considered for
  * reevaluation
  * @param reevaluateCount an <code>int<code> specifying how many entities should be
  *        reevaluated
  */
 protected void reevaluate(List<? extends Entity> entities, int reevaluateCount) {
   RandomSelector selector = new RandomSelector();
   List<? extends Entity> subList = selector.on(entities).select(Samples.first(reevaluateCount));
   for (Entity entity : subList) {
     // FIXME: does not reevaluate the _best_ positon.
     entity.calculateFitness();
   }
 }
  /** {@inheritDoc} */
  @Override
  public Entity create(Entity targetEntity, Entity current, Topology<? extends Entity> topology) {
    List<Entity> participants =
        (List<Entity>)
            Selection.copyOf(topology).exclude(targetEntity, current).select(Samples.all());
    Vector differenceVector = determineDistanceVector(participants);

    Vector targetVector = (Vector) targetEntity.getCandidateSolution();
    Vector trialVector =
        targetVector.plus(
            differenceVector.multiply(
                new P1<Number>() {
                  @Override
                  public Number _1() {
                    return scaleParameter.getParameter();
                  }
                }));

    Entity trialEntity = current.getClone();
    trialEntity.setCandidateSolution(trialVector);

    return trialEntity;
  }