/** {@inheritDoc} */ @Override public void initialise(Problem problem) { StructuredType harmony = problem.getDomain().getBuiltRepresenation().getClone(); harmony.randomize(new MersenneTwister()); setCandidateSolution(harmony); this.getProperties().put(EntityType.FITNESS, InferiorFitness.instance()); }
/** * Splits up the given {@link OptimisationProblem} into sub-problems, where each sub problem * contains a sequencial (non-uniform sized) portion of the problem vector, and assigns them to * all the participating {@link Algorithm}s. This implementation assigns a portion of length * equals to dimensionality/number of populations + 1 to dimensionality % number of populations of * the participating algorithms. * * @param populations The list of participating {@linkplain PopulationBasedAlgorithm}s. * @param problem The problem that needs to be re-distributed. * @param context The context vector maintained by the {@linkplain * CooperativeCoevolutionAlgorithm}. */ public void performDistribution( List<PopulationBasedAlgorithm> populations, Problem problem, Vector context) { checkArgument( populations.size() >= 2, "There should at least be two Cooperating populations in a Cooperative Algorithm"); int dimension = problem.getDomain().getDimension() / populations.size(); int oddDimensions = problem.getDomain().getDimension() % populations.size(); int i = 0; int offset = 0; for (Algorithm population : populations) { int actualDimension = dimension; if (i < oddDimensions) actualDimension++; DimensionAllocation problemAllocation = new SequencialDimensionAllocation(offset, actualDimension); population.setOptimisationProblem( new CooperativeCoevolutionProblemAdapter(problem, problemAllocation, context)); offset += actualDimension; ++i; } }