Пример #1
0
  @Override
  public void predict(long uid, @Nonnull MutableSparseVector predictions) {
    logger.debug("predicting {} items for {}", predictions.keyDomain().size(), uid);
    OrdRecModel params = new OrdRecModel(quantizer);
    SparseVector ratings = makeUserVector(uid, userEventDao);
    LongSet keySet = LongUtils.setUnion(ratings.keySet(), predictions.keyDomain());
    MutableSparseVector scores = MutableSparseVector.create(keySet);
    itemScorer.score(uid, scores);
    params.train(ratings, scores);
    logger.debug("trained parameters for {}: {}", uid, params);

    Vector probabilities = Vector.createLength(params.getLevelCount());
    Long2ObjectMap<IVector> distChannel = null;
    if (reportDistribution) {
      distChannel = predictions.addChannel(RATING_PROBABILITY_CHANNEL);
    }

    for (VectorEntry e : predictions.fast(VectorEntry.State.EITHER)) {
      long iid = e.getKey();
      double score = scores.get(iid);
      params.getProbDistribution(score, probabilities);

      int mlIdx = probabilities.maxElementIndex();

      predictions.set(e, quantizer.getIndexValue(mlIdx));
      if (distChannel != null) {
        distChannel.put(e.getKey(), probabilities.immutable());
      }
    }
  }
Пример #2
0
    /**
     * The constructor of OrdRecParameter. It use the quantized values of rating to initialize t1
     * and beta. Each threshold is initialized as the mean of two contiguous rating values. Since
     * the index of quantizer is always an successive non-negative integer begin from 0, so t1 will
     * initialize as 0.5, and the interval between two thresholds will be 1.
     *
     * @param qtz The quantizer for ratings
     */
    private OrdRecModel(Quantizer qtz) {
      qtzValues = qtz.getValues();
      levelCount = qtzValues.length();
      t1 = (qtzValues.get(0) + qtzValues.get(1)) / 2;
      beta = Vector.createLength(levelCount - 2);

      double tr = t1;
      for (int i = 1; i <= beta.length(); i++) {
        double trnext = (qtzValues.get(i) + qtzValues.get(i + 1)) * 0.5;
        beta.set(i - 1, Math.log(trnext - tr));
        tr = trnext;
      }
    }
Пример #3
0
    /** The train function of OrdRec. Get all parameters after learning process. */
    @SuppressWarnings("ConstantConditions")
    private void train(SparseVector ratings, MutableSparseVector scores) {

      Vector dbeta = Vector.createLength(beta.length());
      double dt1;
      // n is the number of iteration;
      for (int j = 0; j < iterationCount; j++) {
        for (VectorEntry rating : ratings.fast()) {
          long iid = rating.getKey();
          double score = scores.get(iid);
          int r = quantizer.index(rating.getValue());

          double probEqualR = getProbEQ(score, r);
          double probLessR = getProbLE(score, r);
          double probLessR_1 = getProbLE(score, r - 1);

          dt1 =
              learningRate
                  / probEqualR
                  * (probLessR * (1 - probLessR) * derivateOfBeta(r, 0, t1)
                      - probLessR_1 * (1 - probLessR_1) * derivateOfBeta(r - 1, 0, t1)
                      - regTerm * t1);

          double dbetaK;
          for (int k = 0; k < beta.length(); k++) {
            dbetaK =
                learningRate
                    / probEqualR
                    * (probLessR * (1 - probLessR) * derivateOfBeta(r, k + 1, beta.get(k))
                        - probLessR_1
                            * (1 - probLessR_1)
                            * derivateOfBeta(r - 1, k + 1, beta.get(k))
                        - regTerm * beta.get(k));
            dbeta.set(k, dbetaK);
          }
          t1 = t1 + dt1;
          beta.add(dbeta);
        }
      }
    }