/** * Configure the MOCell algorithm with default parameter settings * * @return an algorithm object * @throws jmetal.util.JMException */ public Algorithm configure() throws JMException { Algorithm algorithm; Operator selection = null; // Selection operator Operator crossover = null; // Crossover operator Operator mutation = null; // Mutation operator Operator localsearch = null; // LocalSearch operator QualityIndicator indicators; // Creating the problem: there are six MOCell variants // algorithm = new sMOCell1(problem_) ; // algorithm = new sMOCell2(problem_) ; // algorithm = new aMOCell1(problem_) ; // algorithm = new aMOCell2(problem_) ; // algorithm = new aMOCell3(problem_) ; // algorithm = new aMOCell4CTBT(problem_) ; algorithm = new aMOCell4(problem_); // algorithm = new aMOCell2CTBT(problem_) ; // Algorithm parameters algorithm.setInputParameter("populationSize", populationSize_); algorithm.setInputParameter("maxEvaluations", maxEvaluations_); algorithm.setInputParameter("archiveSize", archiveSize_); algorithm.setInputParameter("feedBack", feedback_); // algorithm.setInputParameter( "specialSolution" , P_SPECIAL_SOLUTION ); // Mutation and Crossover for Real codification crossover = CrossoverFactory.getCrossoverOperator(CROSSOVER); // crossover = CrossoverFactory.getCrossoverOperator("SBXCrossover"); crossover.setParameter("probability", crossoverProbability_); crossover.setParameter("distributionIndex", distributionIndexForCrossover_); mutation = MutationFactory.getMutationOperator(MUTATION); // mutation = MutationFactory.getMutationOperator("PolynomialMutation"); mutation.setParameter("probability", mutationProbability_); // mutation.setParameter( "rounds" , (Integer) M_ROUNDS ); mutation.setParameter("Problem", problem_); // mutation.setParameter( "overloadPercentage" , M_OVERLOAD_PER ); // mutation.setParameter( "Policy" , M_POLICY ); // mutation.setParameter( "Mode" , M_MODE ); selection = SelectionFactory.getSelectionOperator(SELECTION); localsearch = LocalSearchFactory.getLocalSearchOperator(LOCAL_SEARCH); localsearch.setParameter("Problem", problem_); // Add the operators to the algorithm algorithm.addOperator("localsearch", localsearch); algorithm.addOperator("crossover", crossover); algorithm.addOperator("mutation", mutation); algorithm.addOperator("selection", selection); // // Creating the indicator object // if (! paretoFrontFile_.equals("")) { // indicators = new QualityIndicator(problem_, paretoFrontFile_); // algorithm.setInputParameter("indicators", indicators) ; // } // if return algorithm; }
/** * Configure the MOCell algorithm with default parameter settings * * @return an algorithm object * @throws jmetal.util.JMException */ public Algorithm configure() throws JMException { Algorithm algorithm; Operator selection; Operator crossover; Operator mutation; QualityIndicator indicators; // Creating the problem: there are six MOCell variants // algorithm = new sMOCell1(problem_) ; // algorithm = new sMOCell2(problem_) ; // algorithm = new aMOCell1(problem_) ; // algorithm = new aMOCell2(problem_) ; // algorithm = new aMOCell3(problem_) ; algorithm = new sMOCell4CTBT(problem_); // Algorithm parameters algorithm.setInputParameter("populationSize", populationSize_); algorithm.setInputParameter("maxEvaluations", maxEvaluations_); algorithm.setInputParameter("archiveSize", archiveSize_); algorithm.setInputParameter("feedBack", feedback_); // Mutation and Crossover for Real codification crossover = CrossoverFactory.getCrossoverOperator("DPX"); // crossover = CrossoverFactory.getCrossoverOperator("SBXCrossover"); crossover.setParameter("probability", crossoverProbability_); crossover.setParameter("distributionIndex", distributionIndexForCrossover_); mutation = MutationFactory.getMutationOperator("BinaryMutation"); // mutation = MutationFactory.getMutationOperator("PolynomialMutation"); mutation.setParameter("probability", mutationProbability_); mutation.setParameter("distributionIndex", distributionIndexForMutation_); // Selection Operator selection = SelectionFactory.getSelectionOperator("BinaryTournament"); // Add the operators to the algorithm algorithm.addOperator("crossover", crossover); algorithm.addOperator("mutation", mutation); algorithm.addOperator("selection", selection); // // Creating the indicator object // if (! paretoFrontFile_.equals("")) { // indicators = new QualityIndicator(problem_, paretoFrontFile_); // algorithm.setInputParameter("indicators", indicators) ; // } // if return algorithm; }
public static void main(String[] args) throws JMException, ClassNotFoundException { Problem problem; // The problem to solve Algorithm algorithm; // The algorithm to use Operator crossover; // Crossover operator Operator mutation; // Mutation operator Operator selection; // Selection operator // int bits ; // Length of bit string in the OneMax problem // bits = 512 ; // problem = new OneMax(bits); problem = new Sphere("Real", 20); // problem = new Easom("Real") ; // problem = new Griewank("Real", 10) ; algorithm = new DE(problem); // Asynchronous cGA /* Algorithm parameters*/ algorithm.setInputParameter("populationSize", 100); algorithm.setInputParameter("maxEvaluations", 1000000); // Crossover operator crossover = CrossoverFactory.getCrossoverOperator("DifferentialEvolutionCrossover"); crossover.setParameter("CR", 0.1); crossover.setParameter("F", 0.5); crossover.setParameter("DE_VARIANT", "rand/1/bin"); // Add the operators to the algorithm selection = SelectionFactory.getSelectionOperator("DifferentialEvolutionSelection"); algorithm.addOperator("crossover", crossover); algorithm.addOperator("selection", selection); /* Execute the Algorithm */ long initTime = System.currentTimeMillis(); SolutionSet population = algorithm.execute(); long estimatedTime = System.currentTimeMillis() - initTime; System.out.println("Total execution time: " + estimatedTime); /* Log messages */ System.out.println("Objectives values have been writen to file FUN"); population.printObjectivesToFile("FUN"); System.out.println("Variables values have been writen to file VAR"); population.printVariablesToFile("VAR"); } // main