Пример #1
0
  public void paintComponent(Graphics g) {
    super.paintComponent(g);

    int xCenter = getSize().width / 2;
    int yCenter = getSize().height / 2;
    int radius = (int) (Math.min(getSize().width, getSize().height) * 0.4);

    // Create a Polygon object
    Polygon polygon = new Polygon();

    // Add points to the polygon
    polygon.addPoint(xCenter + radius, yCenter);
    polygon.addPoint(
        (int) (xCenter + radius * Math.cos(2 * Math.PI / 6)),
        (int) (yCenter - radius * Math.sin(2 * Math.PI / 6)));
    polygon.addPoint(
        (int) (xCenter + radius * Math.cos(2 * 2 * Math.PI / 6)),
        (int) (yCenter - radius * Math.sin(2 * 2 * Math.PI / 6)));
    polygon.addPoint(
        (int) (xCenter + radius * Math.cos(3 * 2 * Math.PI / 6)),
        (int) (yCenter - radius * Math.sin(3 * 2 * Math.PI / 6)));
    polygon.addPoint(
        (int) (xCenter + radius * Math.cos(4 * 2 * Math.PI / 6)),
        (int) (yCenter - radius * Math.sin(4 * 2 * Math.PI / 6)));
    polygon.addPoint(
        (int) (xCenter + radius * Math.cos(5 * 2 * Math.PI / 6)),
        (int) (yCenter - radius * Math.sin(5 * 2 * Math.PI / 6)));

    // Draw the polygon
    g.drawPolygon(polygon);
  }
Пример #2
0
  /**
   * Paint the clock
   *
   * @param c a component
   * @param g graphic object
   * @param x
   * @param y
   */
  public void paintIcon(Component c, Graphics g, int x, int y) {
    Graphics2D g2 = (Graphics2D) g;
    Ellipse2D.Double circle = new Ellipse2D.Double();
    circle.setFrameFromCenter(250, 250, 400, 400);
    g2.draw(circle);

    Line2D.Double hHand =
        new Line2D.Double(
            250,
            250,
            250 + HOUR_HAND_LENGTH * Math.sin(Math.PI * (double) hour / 6),
            250 - HOUR_HAND_LENGTH * Math.cos(Math.PI * (double) hour / 6));
    Line2D.Double mHand =
        new Line2D.Double(
            250,
            250,
            250 + MIN_HAND_LENGTH * Math.sin(Math.PI * (double) min / 30),
            250 - MIN_HAND_LENGTH * Math.cos(Math.PI * (double) min / 30));
    Line2D.Double sHand =
        new Line2D.Double(
            250,
            250,
            250 + SEC_HAND_LENGTH * Math.sin(Math.PI * (double) sec / 30),
            250 - SEC_HAND_LENGTH * Math.cos(Math.PI * (double) sec / 30));
    g2.draw(hHand);
    g2.draw(mHand);
    g2.draw(sHand);
  }
Пример #3
0
 private void drawArrow(Graphics2D g2, double theta, double x0, double y0) {
   double x = x0 - barb * Math.cos(theta + phi);
   double y = y0 - barb * Math.sin(theta + phi);
   g2.draw(new Line2D.Double(x0, y0, x, y));
   x = x0 - barb * Math.cos(theta - phi);
   y = y0 - barb * Math.sin(theta - phi);
   g2.draw(new Line2D.Double(x0, y0, x, y));
 }
Пример #4
0
  /**
   * Draws an open star with a specified number of points.<br>
   * The center of this star is specified by centerX,centerY and its size is specified by radius
   * <br>
   * (As in the radius of the circle the star would fit inside). <br>
   * Precondition: points >= 2 <br>
   * Example: <br>
   * Expo.drawStar(g,300,200,100,8); <br>
   * Draws an open star with 8 points and a radius of 100 pixels whose center is located at the
   * coordinate (300,200).
   */
  public static void drawStar(Graphics g, int centerX, int centerY, int radius, int points) {
    int halfRadius = getHalfRadius(radius, points);
    int p = points;
    points *= 2;

    int xCoord[] = new int[points];
    int yCoord[] = new int[points];

    int currentRadius;

    for (int k = 0; k < points; k++) {
      if (k % 2 == 0) currentRadius = radius;
      else currentRadius = halfRadius;

      xCoord[k] = (int) Math.round(Math.cos(twoPI * k / points - halfPI) * currentRadius) + centerX;
      yCoord[k] = (int) Math.round(Math.sin(twoPI * k / points - halfPI) * currentRadius) + centerY;
    }

    int x = (p - 5) / 2 + 1;
    if (p >= 5 && p <= 51)
      switch (p % 4) {
        case 1:
          yCoord[x] = yCoord[x + 1] = yCoord[points - x - 1] = yCoord[points - x];
          break;
        case 2:
          yCoord[x] = yCoord[x + 1] = yCoord[points - x - 1] = yCoord[points - x];
          yCoord[x + 3] = yCoord[x + 4] = yCoord[points - x - 4] = yCoord[points - x - 3];
          break;
        case 3:
          yCoord[x + 2] = yCoord[x + 3] = yCoord[points - x - 3] = yCoord[points - x - 2];
      }
    g.drawPolygon(xCoord, yCoord, points);
  }
Пример #5
0
  public static void main(String[] args) {
    Plot2DPanel p2 = new Plot2DPanel();

    double[][] XYZ = new double[100][2];
    for (int j = 0; j < XYZ.length; j++) {
      XYZ[j][0] = 2 * Math.PI * (double) j / XYZ.length;
      XYZ[j][1] = Math.sin(XYZ[j][0]);
    }
    double[][] XYZ2 = new double[100][2];
    for (int j = 0; j < XYZ2.length; j++) {
      XYZ2[j][0] = 2 * Math.PI * (double) j / XYZ.length;
      XYZ2[j][1] = Math.sin(2 * XYZ2[j][0]);
    }

    p2.addLinePlot("sin", Color.RED, AbstractDrawer.DOTTED_LINE, XYZ);
    p2.setBackground(new Color(200, 0, 0));
    p2.addLinePlot("sin2", Color.BLUE, AbstractDrawer.CROSS_DOT, XYZ2);

    p2.setLegendOrientation(PlotPanel.SOUTH);
    new FrameView(p2).setDefaultCloseOperation(JFrame.DO_NOTHING_ON_CLOSE);

    Plot3DPanel p = new Plot3DPanel();

    XYZ = new double[100][3];
    for (int j = 0; j < XYZ.length; j++) {
      XYZ[j][0] = 2 * Math.PI * (double) j / XYZ.length;
      XYZ[j][1] = Math.sin(XYZ[j][0]);
      XYZ[j][2] = Math.sin(XYZ[j][0]) * Math.cos(XYZ[j][1]);
    }
    p.addLinePlot("toto", XYZ);

    p.setLegendOrientation(PlotPanel.SOUTH);
    new FrameView(p).setDefaultCloseOperation(JFrame.DO_NOTHING_ON_CLOSE);
  }
Пример #6
0
 void draw(Graphics2D g) {
   g.setColor(darkColor);
   int x = (int) (center_x + distance * Math.sin(-unit * current / num));
   int y = (int) (center_y + distance * Math.cos(-unit * current / num));
   Area area = new Area(new Ellipse2D.Double(x, y, ball_r, ball_r));
   g.fill(area);
 }
Пример #7
0
 public static double[][] initialisationXy(
     double[][] xy, double pasCircu, double R, double[] teta) {
   int i = 0;
   while (i < xy.length) {
     xy[i][0] = R * Math.cos(teta[i]) + R;
     xy[i][1] = R * Math.sin(teta[i]);
     i++;
   }
   return xy;
 }
Пример #8
0
  @Override
  /** Draw the clock */
  protected void paintComponent(Graphics g) {
    super.paintComponent(g);

    // Initialize clock parameters
    int clockRadius = (int) (Math.min(getWidth(), getHeight()) * 0.8 * 0.5);
    int xCenter = getWidth() / 2;
    int yCenter = getHeight() / 2;

    // Draw circle
    g.setColor(Color.black);
    g.drawOval(xCenter - clockRadius, yCenter - clockRadius, 2 * clockRadius, 2 * clockRadius);
    g.drawString("12", xCenter - 5, yCenter - clockRadius + 12);
    g.drawString("9", xCenter - clockRadius + 3, yCenter + 5);
    g.drawString("3", xCenter + clockRadius - 10, yCenter + 3);
    g.drawString("6", xCenter - 3, yCenter + clockRadius - 3);

    // Draw second hand
    int sLength = (int) (clockRadius * 0.8);
    int xSecond = (int) (xCenter + sLength * Math.sin(second * (2 * Math.PI / 60)));
    int ySecond = (int) (yCenter - sLength * Math.cos(second * (2 * Math.PI / 60)));
    g.setColor(Color.red);
    g.drawLine(xCenter, yCenter, xSecond, ySecond);

    // Draw minute hand
    int mLength = (int) (clockRadius * 0.65);
    int xMinute = (int) (xCenter + mLength * Math.sin(minute * (2 * Math.PI / 60)));
    int yMinute = (int) (yCenter - mLength * Math.cos(minute * (2 * Math.PI / 60)));
    g.setColor(Color.blue);
    g.drawLine(xCenter, yCenter, xMinute, yMinute);

    // Draw hour hand
    int hLength = (int) (clockRadius * 0.5);
    int xHour =
        (int) (xCenter + hLength * Math.sin((hour % 12 + minute / 60.0) * (2 * Math.PI / 12)));
    int yHour =
        (int) (yCenter - hLength * Math.cos((hour % 12 + minute / 60.0) * (2 * Math.PI / 12)));
    g.setColor(Color.green);
    g.drawLine(xCenter, yCenter, xHour, yHour);
  }
Пример #9
0
 public void calc() {
   try {
     // 取得輸入區的字串, 轉成浮點數後除以角度換算單位
     double theta = Double.parseDouble(degree.getText()) / convert;
     // 計算三角函數值, 並將結果寫到各文字欄位中
     sintxt.setText(String.format("%.3f", Math.sin(theta)));
     costxt.setText(String.format("%.3f", Math.cos(theta)));
     tantxt.setText(String.format("%.3f", Math.tan(theta)));
   } catch (NumberFormatException e) {
     degree.setText(""); // 發生例外時清除輸入區內容
   }
 }
Пример #10
0
 public void loseCoins() {
   int x = player1.getX();
   int y = player1.getY();
   double losePercentage = 0.1;
   for (int i = 0;
       i < (int) coins * losePercentage;
       i++) { // makes the user lose 10 percent of the coin and draws them in a circle
     // System.out.println(i);
     int xPos = x + (int) (100 * Math.cos(Math.toRadians((360 / (coins * losePercentage)) * i)));
     int yPos = y - (int) (100 * Math.sin(Math.toRadians((360 / (coins * losePercentage)) * i)));
     coinList.add(new Coin(xPos, yPos, 3));
   }
   coins -= (int) (coins * losePercentage);
 }
Пример #11
0
    @Override
    protected void paintComponent(Graphics g) {
      Graphics2D g2d = (Graphics2D) g;

      final Dimension size = getSize();
      int _size = Math.min(size.width, size.height);
      _size = Math.min(_size, 600);

      if (myImage != null && myShouldInvalidate) {
        if (myImage.getWidth(null) != _size) {
          myImage = null;
        }
      }

      myShouldInvalidate = false;

      if (myImage == null) {
        myImage =
            createImage(
                new ColorWheelImageProducer(
                    _size - BORDER_SIZE * 2, _size - BORDER_SIZE * 2, myBrightness));
        myWheel =
            new Rectangle(
                BORDER_SIZE, BORDER_SIZE, _size - BORDER_SIZE * 2, _size - BORDER_SIZE * 2);
      }

      g.setColor(UIManager.getColor("Panel.background"));
      g.fillRect(0, 0, getWidth(), getHeight());

      g2d.setComposite(
          AlphaComposite.getInstance(AlphaComposite.SRC_OVER, ((float) myOpacity) / 255f));
      g.drawImage(myImage, myWheel.x, myWheel.y, null);

      g2d.setComposite(AlphaComposite.getInstance(AlphaComposite.SRC, 1.0f));

      int mx = myWheel.x + myWheel.width / 2;
      int my = myWheel.y + myWheel.height / 2;
      //noinspection UseJBColor
      g.setColor(Color.WHITE);
      int arcw = (int) (myWheel.width * mySaturation / 2);
      int arch = (int) (myWheel.height * mySaturation / 2);
      double th = myHue * 2 * Math.PI;
      final int x = (int) (mx + arcw * Math.cos(th));
      final int y = (int) (my - arch * Math.sin(th));
      g.fillRect(x - 2, y - 2, 4, 4);
      //noinspection UseJBColor
      g.setColor(Color.BLACK);
      g.drawRect(x - 2, y - 2, 4, 4);
    }
  public void flecha(Graphics papel, int x1, int y1, int x2, int y2) {
    double ang = 0.0, angSep = 0.0;
    double tx = 0, ty = 0;
    int dist = 0;
    Point punto1 = null, punto2 = null;

    punto2 = new Point(x1, y1);
    punto1 = new Point(x2, y2);

    dist = 15;

    ty = -(punto1.y - punto2.y) * 1.0;
    tx = (punto1.x - punto2.x) * 1.0;
    ang = Math.atan(ty / tx);

    if (tx < 0) ang += Math.PI;
    Point p1 = new Point(), p2 = new Point(), punto = punto2;
    angSep = 25.0;

    p1.x = (int) (punto.x + dist * Math.cos(ang - Math.toRadians(angSep)));
    p1.y = (int) (punto.y - dist * Math.sin(ang - Math.toRadians(angSep)));
    p2.x = (int) (punto.x + dist * Math.cos(ang + Math.toRadians(angSep)));
    p2.y = (int) (punto.y - dist * Math.sin(ang + Math.toRadians(angSep)));

    Graphics2D g2D = (Graphics2D) papel;
    papel.setColor(Color.black);
    g2D.setStroke(new BasicStroke(1.2f));
    papel.drawLine(punto1.x, punto1.y, punto.x, punto.y);

    int x[] = {p1.x, punto.x, p2.x};
    int y[] = {p1.y, punto.y, p2.y};
    Polygon myTri = new Polygon(x, y, 3);
    papel.setColor(Color.BLACK);
    papel.drawPolygon(myTri);
    papel.fillPolygon(myTri);
  }
Пример #13
0
  protected void recalcOutFreq() {
    if (inRate == 0f) return;

    double omegaIn, omegaOut, warp;
    ParamField ggOutFreq;

    omegaIn = pr.para[PR_INFREQ].val / inRate * Constants.PI2;
    warp = Math.max(-0.98, Math.min(0.98, pr.para[PR_WARP].val / 100)); // DAFx2000 'b'
    omegaOut = omegaIn + 2 * Math.atan2(warp * Math.sin(omegaIn), 1.0 - warp * Math.cos(omegaIn));

    ggOutFreq = (ParamField) gui.getItemObj(GG_OUTFREQ);
    if (ggOutFreq != null) {
      ggOutFreq.setParam(new Param(omegaOut / Constants.PI2 * inRate, Param.ABS_HZ));
    }
  }
Пример #14
0
  /** Recalculates the (x,y) point used to indicate the selected color. */
  private void regeneratePoint() {
    int size =
        Math.min(
            MAX_SIZE,
            Math.min(
                getWidth() - imagePadding.left - imagePadding.right,
                getHeight() - imagePadding.top - imagePadding.bottom));
    if (mode == ColorPicker.HUE || mode == ColorPicker.SAT || mode == ColorPicker.BRI) {
      if (mode == ColorPicker.HUE) {
        point = new Point((int) (sat * size), (int) (bri * size));
      } else if (mode == ColorPicker.SAT) {
        double theta = hue * 2 * Math.PI - Math.PI / 2;
        if (theta < 0) theta += 2 * Math.PI;

        double r = bri * size / 2;
        point =
            new Point(
                (int) (r * Math.cos(theta) + .5 + size / 2.0),
                (int) (r * Math.sin(theta) + .5 + size / 2.0));
      } else if (mode == ColorPicker.BRI) {
        double theta = hue * 2 * Math.PI - Math.PI / 2;
        if (theta < 0) theta += 2 * Math.PI;
        double r = sat * size / 2;
        point =
            new Point(
                (int) (r * Math.cos(theta) + .5 + size / 2.0),
                (int) (r * Math.sin(theta) + .5 + size / 2.0));
      }
    } else if (mode == ColorPicker.RED) {
      point = new Point((int) (green * size / 255f + .49f), (int) (blue * size / 255f + .49f));
    } else if (mode == ColorPicker.GREEN) {
      point = new Point((int) (red * size / 255f + .49f), (int) (blue * size / 255f + .49f));
    } else if (mode == ColorPicker.BLUE) {
      point = new Point((int) (red * size / 255f + .49f), (int) (green * size / 255f + .49f));
    }
  }
Пример #15
0
  /**
   * Draws an open regular polygon with a specified number of sides.<br>
   * The center of this polygon is specified by centerX,centerY and its size is specified by radius
   * <br>
   * (As in the radius of the circle the regular polygon would fit inside). <br>
   * Precondition: sides >= 3 <br>
   * Example: Expo.drawRegularPolygon(g,300,200,100,8); Draws an open regular octagon with a radius
   * of 100 pixels whose center is located at the coordinate (300,200).
   */
  public static void drawRegularPolygon(
      Graphics g, int centerX, int centerY, int radius, int sides) {
    int xCoord[] = new int[sides];
    int yCoord[] = new int[sides];

    double rotate;
    if (sides % 2 == 1) rotate = halfPI;
    else rotate = halfPI + Math.PI / sides;

    for (int k = 0; k < sides; k++) {
      xCoord[k] = (int) Math.round(Math.cos(twoPI * k / sides - rotate) * radius) + centerX;
      yCoord[k] = (int) Math.round(Math.sin(twoPI * k / sides - rotate) * radius) + centerY;
    }
    if (sides == 3) yCoord[1] = yCoord[2];
    g.drawPolygon(xCoord, yCoord, sides);
  }
Пример #16
0
 private Path2D.Double makeStar(int r1, int r2, int vc) {
   int or = Math.max(r1, r2);
   int ir = Math.min(r1, r2);
   double agl = 0d;
   double add = 2 * Math.PI / (vc * 2);
   Path2D.Double p = new Path2D.Double();
   p.moveTo(or * 1, or * 0);
   for (int i = 0; i < vc * 2 - 1; i++) {
     agl += add;
     int r = i % 2 == 0 ? ir : or;
     p.lineTo(r * Math.cos(agl), r * Math.sin(agl));
   }
   p.closePath();
   AffineTransform at = AffineTransform.getRotateInstance(-Math.PI / 2, or, 0);
   return new Path2D.Double(p, at);
 }
Пример #17
0
  /** Sets the location on the given dialog for the given index. */
  private void setLocation(JDialog dialog, int index) {
    Rectangle bounds = dialog.getBounds();
    JFrame frame = findOwner();
    Dimension dim;
    if (frame == null) {
      dim = Toolkit.getDefaultToolkit().getScreenSize();
    } else {
      dim = frame.getSize();
    }

    int x = (int) (150 * Math.cos(index * 15 * (Math.PI / 180)));
    int y = (int) (150 * Math.sin(index * 15 * (Math.PI / 180)));
    x += (dim.width - bounds.width) / 2;
    y += (dim.height - bounds.height) / 2;
    dialog.setLocation(x, y);
  }
Пример #18
0
  protected void recalcWarpAmount() {
    if (inRate == 0f) return;

    double omegaIn, omegaOut, warp, d1;
    ParamField ggWarp;

    omegaIn = pr.para[PR_INFREQ].val / inRate * Constants.PI2;
    omegaOut = pr.para[PR_OUTFREQ].val / inRate * Constants.PI2;
    d1 = Math.tan((omegaOut - omegaIn) / 2);
    warp =
        Math.max(
            -0.98,
            Math.min(0.98, d1 / (Math.sin(omegaIn) + Math.cos(omegaIn) * d1))); // DAFx2000 'b'

    ggWarp = (ParamField) gui.getItemObj(GG_WARP);
    if (ggWarp != null) {
      ggWarp.setParam(new Param(warp * 100, Param.FACTOR));
    }
  }
 private AnnotatedChartModel createCosineModel() {
   DefaultChartModel model = new DefaultChartModel("Cosine");
   int numIntervals = 36;
   for (int i = 0; i <= numIntervals; i++) {
     double x = (360.0 * i) / numIntervals;
     double y = Math.cos(x * 2 * Math.PI / 360.0);
     ChartPoint p = new ChartPoint(x, y);
     model.addPoint(p);
   }
   ChartLabel label = new ChartLabel(new RealPosition(75.0), new RealPosition(8.0));
   // As before we could simply use a basic string, but we are demonstrating the rich text mark-up
   // possibility
   label.setLabel(
       "<html><p style='text-align:center'>A <span style='color:black'><b><u>Cosine</u></b></span><br>Wave</p></html>");
   label.setColor(Color.gray);
   model.addAnnotation(label);
   ChartArrow arrow = new ChartArrow(new Point(75, 8), new Point(100, 20));
   arrow.setFromPixelOffset(new Point(0, -10));
   model.addAnnotation(arrow);
   return model;
 }
Пример #20
0
  private Tile[] rotate(int angle) {
    Tile[] newTiles = new Tile[4 * 4];
    int offsetX = 3, offsetY = 3;
    if (angle == 90) {
      offsetY = 0;
    } else if (angle == 270) {
      offsetX = 0;
    }

    double rad = Math.toRadians(angle);
    int cos = (int) Math.cos(rad);
    int sin = (int) Math.sin(rad);
    for (int x = 0; x < 4; x++) {
      for (int y = 0; y < 4; y++) {
        int newX = (x * cos) - (y * sin) + offsetX;
        int newY = (x * sin) + (y * cos) + offsetY;
        newTiles[(newX) + (newY) * 4] = tileAt(x, y);
      }
    }
    return newTiles;
  }
Пример #21
0
  /*
   *  Defines a simple transformation matrix
   *  Outputs the transformation matrix
   */
  public static double[][] DefineElementaryTransform(
      double[][] inputMatrix, TRANSFORM_CODE transformCode, double transformValue) {
    double[][] transMatrix = {{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}};
    double[][] retMatrix = new double[4][4];
    double radianVal = Math.PI * transformValue / 180;

    switch (transformCode) {
      case X_TRANS:
        transMatrix[3][0] = transformValue;
        break;
      case Y_TRANS:
        transMatrix[3][1] = transformValue;
        break;
      case Z_TRANS:
        transMatrix[3][2] = transformValue;
        break;
      case Y_ROT:
        transMatrix[0][0] = Math.cos(radianVal);
        transMatrix[0][2] = -Math.sin(radianVal);
        transMatrix[2][0] = Math.sin(radianVal);
        transMatrix[2][2] = Math.cos(radianVal);
        break;
      case X_ROT:
        transMatrix[1][1] = Math.cos(radianVal);
        transMatrix[1][2] = Math.sin(radianVal);
        transMatrix[2][1] = -Math.sin(radianVal);
        transMatrix[2][2] = Math.cos(radianVal);
        break;
      case Z_ROT:
        transMatrix[0][0] = Math.cos(radianVal);
        transMatrix[0][1] = Math.sin(radianVal);
        transMatrix[1][0] = -Math.sin(radianVal);
        transMatrix[1][1] = Math.cos(radianVal);
        break;
      case PERSPECTIVE:
        assert (transformValue != 0);
        transMatrix[2][3] = -1 / transformValue;
        break;
      default:
        System.out.println("Error: invalid code passed into function DefineElementaryTransform");
        break;
    }

    retMatrix = MultiplyTransforms(inputMatrix, transMatrix);
    return retMatrix;
  }
Пример #22
0
  public static void main(String[] args) {
    JFrame frame = new JFrame();

    Molecule molecule = new Molecule("H");
    SiteType[] type = new SiteType[Colors.COLORARRAY.length];
    for (int i = 0; i < type.length; i++) {
      type[i] = new SiteType(molecule, "Type " + i);
      type[i].setRadius(1 + 0.5 * (i % 3));
      type[i].setColor(Colors.COLORARRAY[i]);
      molecule.addType(type[i]);
    }
    Site[] site = new Site[3 * type.length];
    for (int i = 0; i < site.length; i++) {
      site[i] = new Site(molecule, type[i % type.length]);
      site[i].setX(30 * Math.cos(2 * Math.PI * i / site.length));
      site[i].setY(30 * Math.sin(2 * Math.PI * i / site.length));
      site[i].setZ(6);
      site[i].setLocation(SystemGeometry.INSIDE);
      molecule.addSite(site[i]);
    }
    Link[] link = new Link[site.length - 1];
    for (int i = 0; i < link.length; i++) {
      link[i] = new Link(site[i], site[i + 1]);
      molecule.addLink(link[i]);
    }

    DrawPanel3D panel3d = new DrawPanel3D(molecule);

    DrawPanel3DPanel panel = new DrawPanel3DPanel(panel3d);

    Container c = frame.getContentPane();
    c.add(panel);

    frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
    frame.setLocationRelativeTo(null);
    frame.setSize(600, 400);
    frame.setVisible(true);
  }
Пример #23
0
  private void spawnCircles() {
    if (circular) {
      for (int i = 0; i < ballN; i++) {
        double degree = Math.random() * 2 * Math.PI;
        float x = ((Player) players.get(0)).getX() + distance * (float) Math.sin(degree * i);
        float y = ((Player) players.get(0)).getY() + distance * (float) Math.cos(degree * i);
        enemies.add(new EnemyTypes.Circle(x, y, invSpeed));
      }
    } else {
      for (int i = 1; i < (ballN / 2); i++) {
        float x = (i * 2 * width) / (ballN);
        float y = 0;
        enemies.add(new EnemyTypes.Circle(x, y, invSpeed));
      }

      for (int i = (ballN / 2) + 1; i < ballN; i++) {
        float x = ((i - ballN / 2) * 2 * width) / ballN;
        float y = height;
        enemies.add(new EnemyTypes.Circle(x, y, invSpeed));
      }
    }
    spawnIncrease = false;
  }
Пример #24
0
  /** Rotate theta degrees about the x axis */
  void xrot(double theta) {
    theta *= (pi / 180);
    double ct = Math.cos(theta);
    double st = Math.sin(theta);

    double Nyx = (yx * ct + zx * st);
    double Nyy = (yy * ct + zy * st);
    double Nyz = (yz * ct + zz * st);
    double Nyo = (yo * ct + zo * st);

    double Nzx = (zx * ct - yx * st);
    double Nzy = (zy * ct - yy * st);
    double Nzz = (zz * ct - yz * st);
    double Nzo = (zo * ct - yo * st);

    yo = Nyo;
    yx = Nyx;
    yy = Nyy;
    yz = Nyz;
    zo = Nzo;
    zx = Nzx;
    zy = Nzy;
    zz = Nzz;
  }
Пример #25
0
  /** Rotate theta degrees about the z axis */
  void zrot(double theta) {
    theta *= pi / 180;
    double ct = Math.cos(theta);
    double st = Math.sin(theta);

    double Nyx = (yx * ct + xx * st);
    double Nyy = (yy * ct + xy * st);
    double Nyz = (yz * ct + xz * st);
    double Nyo = (yo * ct + xo * st);

    double Nxx = (xx * ct - yx * st);
    double Nxy = (xy * ct - yy * st);
    double Nxz = (xz * ct - yz * st);
    double Nxo = (xo * ct - yo * st);

    yo = Nyo;
    yx = Nyx;
    yy = Nyy;
    yz = Nyz;
    xo = Nxo;
    xx = Nxx;
    xy = Nxy;
    xz = Nxz;
  }
Пример #26
0
  /** Rotate theta degrees around the y axis */
  void yrot(double theta) {
    theta *= (pi / 180);
    double ct = Math.cos(theta);
    double st = Math.sin(theta);

    double Nxx = (xx * ct + zx * st);
    double Nxy = (xy * ct + zy * st);
    double Nxz = (xz * ct + zz * st);
    double Nxo = (xo * ct + zo * st);

    double Nzx = (zx * ct - xx * st);
    double Nzy = (zy * ct - xy * st);
    double Nzz = (zz * ct - xz * st);
    double Nzo = (zo * ct - xo * st);

    xo = Nxo;
    xx = Nxx;
    xy = Nxy;
    xz = Nxz;
    zo = Nzo;
    zx = Nzx;
    zy = Nzy;
    zz = Nzz;
  }
Пример #27
0
 public void move() {
   objtimer++;
   // move
   if (xmot.random && objtimer % (int) (35 * xmot.randomchg) == 0) {
     xspeed = xmot.speed * random(-1, 1, 2);
   }
   if (ymot.random && objtimer % (int) (35 * ymot.randomchg) == 0) {
     yspeed = ymot.speed * random(-1, 1, 2);
   }
   if (player != null) {
     double playerdist =
         Math.sqrt((player.x - x) * (player.x - x) + (player.y - y) * (player.y - y))
             * 100.0
             / (pfWidth());
     if (xmot.toplayer && playerdist > xmot.toplayermin && playerdist < xmot.toplayermax) {
       xspeed = 0;
       x += xmot.speed * (player.x > x ? 1 : -1);
     } else if (xmot.frplayer
         && playerdist > xmot.frplayermin
         && playerdist < xmot.frplayermax) {
       xspeed = 0;
       x += xmot.speed * (player.x < x ? 1 : -1);
     }
     if (ymot.toplayer && playerdist > ymot.toplayermin && playerdist < ymot.toplayermax) {
       yspeed = 0;
       y += ymot.speed * (player.y > y ? 1 : -1);
     } else if (ymot.frplayer
         && playerdist > ymot.frplayermin
         && playerdist < ymot.frplayermax) {
       yspeed = 0;
       y += ymot.speed * (player.y < y ? 1 : -1);
     }
   }
   // react to background
   int bounces = 0;
   if (bouncesides.equals("any")) {
     bounces |= 15;
   } else if (bouncesides.equals("top")) {
     bounces |= 1;
   } else if (bouncesides.equals("bottom")) {
     bounces |= 2;
   } else if (bouncesides.equals("topbottom")) {
     bounces |= 3;
   } else if (bouncesides.equals("left")) {
     bounces |= 4;
   } else if (bouncesides.equals("right")) {
     bounces |= 8;
   } else if (bouncesides.equals("leftright")) {
     bounces |= 12;
   }
   if ((bounces & 1) != 0 && y < 0) {
     y = 0;
     if (yspeed < 0) yspeed = -yspeed;
   }
   if ((bounces & 2) != 0 && y > pfHeight() - 16) {
     y = pfHeight() - 16;
     if (yspeed > 0) yspeed = -yspeed;
   }
   if ((bounces & 4) != 0 && x < 0) {
     x = 0;
     if (xspeed < 0) xspeed = -xspeed;
   }
   if ((bounces & 8) != 0 && x > pfWidth() - 16) {
     x = pfWidth() - 16;
     if (xspeed > 0) xspeed = -xspeed;
   }
   // shoot
   if (shoot && shootfreq > 0.0 && objtimer % (int) (shootfreq * 35) == 0) {
     if (shootdir.equals("left")) {
       new AgentBullet(x, y, bullettype, sprite, diebgtype | blockbgtype, -shootspeed, 0);
     } else if (shootdir.equals("right")) {
       new AgentBullet(x, y, bullettype, sprite, diebgtype | blockbgtype, shootspeed, 0);
     } else if (shootdir.equals("up")) {
       new AgentBullet(x, y, bullettype, sprite, diebgtype | blockbgtype, 0, -shootspeed);
     } else if (shootdir.equals("down")) {
       new AgentBullet(x, y, bullettype, sprite, diebgtype | blockbgtype, 0, shootspeed);
     } else if (shootdir.equals("player") && player != null) {
       double angle = Math.atan2(player.x - x, player.y - y);
       new AgentBullet(
           x,
           y,
           bullettype,
           sprite,
           diebgtype | blockbgtype,
           shootspeed * Math.sin(angle),
           shootspeed * Math.cos(angle));
     }
   }
 }
Пример #28
0
 private int yCor(int len, double dir) {
   return (int) (len * Math.cos(dir));
 }
Пример #29
0
  /**
   * Draws the stars on the flag. Two integer arrays are used to store the x-coordinates and
   * y-coordinates of a star (a total of 10 points for each of the 10 vertices). The outer radius is
   * then calculated by multiplying the actual height by the star diameter ratio then dividing by 2.
   * The inner radius is then calculated using trigonometric relationships between the first point
   * (outer right most point) and the point directly to the left of it (the inner right most point),
   * based on the assumption that the y-coordinates of these points are the same. The method then
   * uses a series of for loops to draw the stars, drawing them row by row and 1 by 1 across each
   * row. The outer most for loop increments each row while also determining the number of stars in
   * each row and the initial x offset for the first star, both of which vary depending on the row
   * number. The intermediate for loop increments each column while also determining the X and Y
   * coordinate centers for each star. The inner most for loop generates the x and y coordinates for
   * each of the 10 vertices for each star and stores them in their respective arrays to be used by
   * the fillPolygon method to draw each star.
   *
   * @param g The graphics component on which to draw the stars
   * @param initialWidthOffset The initial width offset towards the right from the left side of the
   *     frame
   * @param initialHeightOffset The initial height offset towards the bottom from the top of the
   *     frame
   * @param actualWidth The actual width of the window, not including the frame border
   * @param actualHeight The actual height of the window, not including the frame border
   */
  public void drawStars(
      Graphics g,
      int initialWidthOffset,
      int initialHeightOffset,
      int actualWidth,
      int actualHeight) {

    g.setColor(Color.WHITE);

    int[] xPoints = new int[10];
    int[] yPoints = new int[10];

    // outer radius
    double r1 = actualHeight * (STAR_DIAMETER / 2);

    // inner radius
    double r2 = r1 * Math.sin(Math.toRadians(18)) / Math.sin(Math.toRadians(54));

    for (int row = 0; row < 9; row++) {

      /* The number of stars per row initially begin at 6 for the first row and alternate between
       * 5 and 6 for each successive row.
       */
      int starsPerRow = (row % 2 == 0) ? 6 : 5;

      /* The initial star x offset is initially 1 for the first row, but alternates between 2
       * and 1 for each successive row.
       */
      int initialStarXOffset = (row % 2 == 0) ? 1 : 2;

      for (int col = 0; col < starsPerRow; col++) {

        /* The x-coordinate center is calculated based on the initial width offset and the star x
         * offset proportional to the actual height, in addition to the initial star x offset and the
         * column number. The x-coordinate center is incremented by the 2 times the star x offset in
         * proportion to the actual height for each iteration of the intermediate for loop. The
         * y-coordinate center is calculated based on the initial height offset and the star y offset
         * proportional to the actual height, in addition to the row number. The y-coordinate center is
         * incremented by the star y offset in proportion to the actual height for each iteration of the
         * outer most for loop.
         */
        int starCenterX =
            (initialWidthOffset)
                + (int) ((actualHeight * STAR_X_OFFSET) * (initialStarXOffset + 2 * col));
        int starCenterY =
            (initialHeightOffset) + (int) ((actualHeight * STAR_Y_OFFSET) * (1 + row));

        for (int i = 0; i < 10; i++) {

          /* Assigns different x and y coordinates for each of the 10 points on a star depending on
           * whether the point is an even/outer point (i % 2) == 0, or an odd/inner point. Points are
           * calculated based on the center x and y coordinates and with the trigonometric sin and cos
           * functions. The angle measure is incremented by 36 degrees for each iteration of the for loop, for
           * use in the cos and sin functions.
           */
          xPoints[i] =
              (i % 2) == 0
                  ? starCenterX + (int) (r1 * Math.cos(Math.toRadians(18 + 36 * i)))
                  : starCenterX + (int) (r2 * Math.cos(Math.toRadians(54 + 36 * (i - 1))));
          yPoints[i] =
              (i % 2) == 0
                  ? starCenterY - (int) (r1 * Math.sin(Math.toRadians(18 + 36 * i)))
                  : starCenterY - (int) (r2 * Math.sin(Math.toRadians(54 + 36 * (i - 1))));
        }

        g.fillPolygon(xPoints, yPoints, 10);
      }
    }
  }
Пример #30
0
  /** Translation durchfuehren */
  public void process() {
    int i, j, k;
    int ch, len;
    float f1;
    double d1, d2, d3, d4, d5;
    long progOff, progLen, lo;

    // io
    AudioFile reInF = null;
    AudioFile imInF = null;
    AudioFile reOutF = null;
    AudioFile imOutF = null;
    AudioFileDescr reInStream = null;
    AudioFileDescr imInStream = null;
    AudioFileDescr reOutStream = null;
    AudioFileDescr imOutStream = null;
    FloatFile reFloatF[] = null;
    FloatFile imFloatF[] = null;
    File reTempFile[] = null;
    File imTempFile[] = null;
    int outChanNum;

    float[][] reInBuf; // [ch][i]
    float[][] imInBuf; // [ch][i]
    float[][] reOutBuf = null; // [ch][i]
    float[][] imOutBuf = null; // [ch][i]
    float[] convBuf1, convBuf2;
    boolean complex;

    PathField ggOutput;

    // Synthesize
    Param ampRef = new Param(1.0, Param.ABS_AMP); // transform-Referenz
    float gain; // gain abs amp
    float dryGain, wetGain;
    float inGain;
    float maxAmp = 0.0f;
    Param peakGain;

    int inLength, inOff;
    int pre;
    int post;
    int length;
    int framesRead, framesWritten, outLength;
    boolean polarIn, polarOut;

    // phase unwrapping
    double[] phi;
    int[] wrap;
    double[] carry;

    Param lenRef;

    topLevel:
    try {

      complex = pr.bool[PR_HASIMINPUT] || pr.bool[PR_HASIMOUTPUT];
      polarIn = pr.intg[PR_OPERATOR] == OP_POLAR2RECT;
      polarOut = pr.intg[PR_OPERATOR] == OP_RECT2POLAR;
      if ((polarIn || polarOut) && !complex) throw new IOException(ERR_NOTCOMPLEX);

      // ---- open input ----

      reInF = AudioFile.openAsRead(new File(pr.text[PR_REINPUTFILE]));
      reInStream = reInF.getDescr();
      inLength = (int) reInStream.length;
      reInBuf = new float[reInStream.channels][8192];
      imInBuf = new float[reInStream.channels][8192];

      if (pr.bool[PR_HASIMINPUT]) {
        imInF = AudioFile.openAsRead(new File(pr.text[PR_IMINPUTFILE]));
        imInStream = imInF.getDescr();
        if (imInStream.channels != reInStream.channels) throw new IOException(ERR_COMPLEX);
        inLength = (int) Math.min(inLength, imInStream.length);
      }

      lenRef = new Param(AudioFileDescr.samplesToMillis(reInStream, inLength), Param.ABS_MS);
      d1 =
          AudioFileDescr.millisToSamples(
              reInStream, (Param.transform(pr.para[PR_OFFSET], Param.ABS_MS, lenRef, null).value));
      j = (int) (d1 >= 0.0 ? (d1 + 0.5) : (d1 - 0.5)); // correct rounding for negative values!
      length =
          (int)
              (AudioFileDescr.millisToSamples(
                      reInStream,
                      (Param.transform(pr.para[PR_LENGTH], Param.ABS_MS, lenRef, null)).value)
                  + 0.5);

      // System.err.println( "offset = "+j );

      if (j >= 0) {
        inOff = Math.min(j, inLength);
        if (!pr.bool[PR_REVERSE]) {
          reInF.seekFrame(inOff);
          if (pr.bool[PR_HASIMINPUT]) {
            imInF.seekFrame(inOff);
          }
        }
        inLength -= inOff;
        pre = 0;
      } else {
        inOff = 0;
        pre = Math.min(-j, length);
      }
      inLength = Math.min(inLength, length - pre);
      post = length - pre - inLength;

      if (pr.bool[PR_REVERSE]) {
        i = pre;
        pre = post;
        post = i;
        inOff += inLength;
      }

      // .... check running ....
      if (!threadRunning) break topLevel;

      // for( op = 0; op < 2; op++ ) {
      // 	System.out.println( op +": pre "+pre[op]+" / len "+inLength[op]+" / post "+post[op] );
      // }
      // System.out.println( "tot "+length[0]);

      outLength = length;
      outChanNum = reInStream.channels;

      // ---- open output ----

      ggOutput = (PathField) gui.getItemObj(GG_REOUTPUTFILE);
      if (ggOutput == null) throw new IOException(ERR_MISSINGPROP);
      reOutStream = new AudioFileDescr(reInStream);
      ggOutput.fillStream(reOutStream);
      reOutStream.channels = outChanNum;
      // well, more sophisticated code would
      // move and truncate the markers...
      if ((pre == 0) /* && (post == 0) */) {
        reInF.readMarkers();
        reOutStream.setProperty(
            AudioFileDescr.KEY_MARKERS, reInStream.getProperty(AudioFileDescr.KEY_MARKERS));
      }
      reOutF = AudioFile.openAsWrite(reOutStream);
      reOutBuf = new float[outChanNum][8192];
      imOutBuf = new float[outChanNum][8192];

      if (pr.bool[PR_HASIMOUTPUT]) {
        imOutStream = new AudioFileDescr(reInStream);
        ggOutput.fillStream(imOutStream);
        imOutStream.channels = outChanNum;
        imOutStream.file = new File(pr.text[PR_IMOUTPUTFILE]);
        imOutF = AudioFile.openAsWrite(imOutStream);
      }
      // .... check running ....
      if (!threadRunning) break topLevel;

      // ---- Further inits ----

      phi = new double[outChanNum];
      wrap = new int[outChanNum];
      carry = new double[outChanNum];
      for (ch = 0; ch < outChanNum; ch++) {
        phi[ch] = 0.0;
        wrap[ch] = 0;
        carry[ch] = Double.NEGATIVE_INFINITY;
      }

      progOff = 0; // read, transform, write
      progLen = (long) outLength * 3;

      wetGain = (float) (Param.transform(pr.para[PR_WETMIX], Param.ABS_AMP, ampRef, null)).value;
      dryGain = (float) (Param.transform(pr.para[PR_DRYMIX], Param.ABS_AMP, ampRef, null)).value;
      if (pr.bool[PR_DRYINVERT]) {
        dryGain = -dryGain;
      }
      inGain = (float) (Param.transform(pr.para[PR_INPUTGAIN], Param.ABS_AMP, ampRef, null)).value;
      if (pr.bool[PR_INVERT]) {
        inGain = -inGain;
      }

      // normalization requires temp files
      if (pr.intg[PR_GAINTYPE] == GAIN_UNITY) {
        reTempFile = new File[outChanNum];
        reFloatF = new FloatFile[outChanNum];
        for (ch = 0;
            ch < outChanNum;
            ch++) { // first zero them because an exception might be thrown
          reTempFile[ch] = null;
          reFloatF[ch] = null;
        }
        for (ch = 0; ch < outChanNum; ch++) {
          reTempFile[ch] = IOUtil.createTempFile();
          reFloatF[ch] = new FloatFile(reTempFile[ch], GenericFile.MODE_OUTPUT);
        }
        if (pr.bool[PR_HASIMOUTPUT]) {
          imTempFile = new File[outChanNum];
          imFloatF = new FloatFile[outChanNum];
          for (ch = 0;
              ch < outChanNum;
              ch++) { // first zero them because an exception might be thrown
            imTempFile[ch] = null;
            imFloatF[ch] = null;
          }
          for (ch = 0; ch < outChanNum; ch++) {
            imTempFile[ch] = IOUtil.createTempFile();
            imFloatF[ch] = new FloatFile(imTempFile[ch], GenericFile.MODE_OUTPUT);
          }
        }
        progLen += outLength;
      } else {
        gain = (float) (Param.transform(pr.para[PR_GAIN], Param.ABS_AMP, ampRef, null)).value;
        wetGain *= gain;
        dryGain *= gain;
      }
      // .... check running ....
      if (!threadRunning) break topLevel;

      // ----==================== the real stuff ====================----

      framesRead = 0;
      framesWritten = 0;

      while (threadRunning && (framesWritten < outLength)) {
        // ---- choose chunk len ----
        len = Math.min(8192, outLength - framesWritten);
        if (pre > 0) {
          len = Math.min(len, pre);
        } else if (inLength > 0) {
          len = Math.min(len, inLength);
        } else {
          len = Math.min(len, post);
        }

        // ---- read input chunks ----
        if (pre > 0) {
          Util.clear(reInBuf);
          if (complex) {
            Util.clear(imInBuf);
          }
          pre -= len;
        } else if (inLength > 0) {
          if (pr.bool[PR_REVERSE]) { // ---- read reversed ----
            reInF.seekFrame(inOff - framesRead - len);
            reInF.readFrames(reInBuf, 0, len);
            for (ch = 0; ch < reInStream.channels; ch++) {
              convBuf1 = reInBuf[ch];
              for (i = 0, j = len - 1; i < j; i++, j--) {
                f1 = convBuf1[j];
                convBuf1[j] = convBuf1[i];
                convBuf1[i] = f1;
              }
            }
            if (pr.bool[PR_HASIMINPUT]) {
              imInF.seekFrame(inOff - framesRead - len);
              imInF.readFrames(imInBuf, 0, len);
              for (ch = 0; ch < imInStream.channels; ch++) {
                convBuf1 = imInBuf[ch];
                for (i = 0, j = len - 1; i < j; i++, j--) {
                  f1 = convBuf1[j];
                  convBuf1[j] = convBuf1[i];
                  convBuf1[i] = f1;
                }
              }
            } else if (complex) {
              Util.clear(imInBuf);
            }
          } else { // ---- read normal ----
            reInF.readFrames(reInBuf, 0, len);
            if (pr.bool[PR_HASIMINPUT]) {
              imInF.readFrames(imInBuf, 0, len);
            } else if (complex) {
              Util.clear(imInBuf);
            }
          }
          inLength -= len;
          framesRead += len;
        } else {
          Util.clear(reInBuf);
          if (complex) {
            Util.clear(imInBuf);
          }
          post -= len;
        }
        progOff += len;
        // .... progress ....
        setProgression((float) progOff / (float) progLen);
        // .... check running ....
        if (!threadRunning) break topLevel;

        // ---- save dry signal ----
        for (ch = 0; ch < outChanNum; ch++) {
          convBuf1 = reInBuf[ch];
          convBuf2 = reOutBuf[ch];
          for (i = 0; i < len; i++) {
            convBuf2[i] = convBuf1[i] * dryGain;
          }
          if (complex) {
            convBuf1 = imInBuf[ch];
            convBuf2 = imOutBuf[ch];
            for (i = 0; i < len; i++) {
              convBuf2[i] = convBuf1[i] * dryGain;
            }
          }
        }

        // ---- rectify + apply input gain ----
        for (ch = 0; ch < reInStream.channels; ch++) {
          convBuf1 = reInBuf[ch];
          convBuf2 = imInBuf[ch];
          // ---- rectify ----
          if (pr.bool[PR_RECTIFY]) {
            if (complex) {
              if (polarIn) {
                for (i = 0; i < len; i++) {
                  convBuf2[i] = 0.0f;
                }
              } else {
                for (i = 0; i < len; i++) {
                  d1 = convBuf1[i];
                  d2 = convBuf2[i];
                  convBuf1[i] = (float) Math.sqrt(d1 * d1 + d2 * d2);
                  convBuf2[i] = 0.0f;
                }
              }
            } else {
              for (i = 0; i < len; i++) {
                convBuf1[i] = Math.abs(convBuf1[i]);
              }
            }
          }
          // ---- apply input gain ----
          Util.mult(convBuf1, 0, len, inGain);
          if (complex & !polarIn) {
            Util.mult(convBuf2, 0, len, inGain);
          }
        }

        // ---- heart of the dragon ----
        for (ch = 0; ch < outChanNum; ch++) {
          convBuf1 = reInBuf[ch];
          convBuf2 = imInBuf[ch];

          switch (pr.intg[PR_OPERATOR]) {
            case OP_NONE: // ================ None ================
              for (i = 0; i < len; i++) {
                reOutBuf[ch][i] += wetGain * convBuf1[i];
              }
              if (complex) {
                for (i = 0; i < len; i++) {
                  imOutBuf[ch][i] += wetGain * convBuf2[i];
                }
              }
              break;

            case OP_SIN: // ================ Cosinus ================
              if (complex) {
                for (i = 0; i < len; i++) {
                  reOutBuf[ch][i] += wetGain * (float) Math.sin(convBuf1[i] * Math.PI);
                  imOutBuf[ch][i] += wetGain * (float) Math.sin(convBuf2[i] * Math.PI);
                }
              } else {
                for (i = 0; i < len; i++) {
                  reOutBuf[ch][i] += wetGain * (float) Math.sin(convBuf1[i] * Math.PI);
                }
              }
              break;

            case OP_SQR: // ================ Square ================
              if (complex) {
                for (i = 0; i < len; i++) {
                  reOutBuf[ch][i] +=
                      wetGain * (convBuf1[i] * convBuf1[i] - convBuf2[i] * convBuf2[i]);
                  imOutBuf[ch][i] -= wetGain * (convBuf1[i] * convBuf2[i] * 2);
                }
              } else {
                for (i = 0; i < len; i++) {
                  reOutBuf[ch][i] += wetGain * (convBuf1[i] * convBuf1[i]);
                }
              }
              break;

            case OP_SQRT: // ================ Square root ================
              if (complex) {
                d3 = phi[ch];
                k = wrap[ch];
                d4 = k * Constants.PI2;
                for (i = 0; i < len; i++) {
                  d1 =
                      wetGain
                          * Math.pow(convBuf1[i] * convBuf1[i] + convBuf2[i] * convBuf2[i], 0.25);
                  d2 = Math.atan2(convBuf2[i], convBuf1[i]);
                  if (d2 - d3 > Math.PI) {
                    k--;
                    d4 = k * Constants.PI2;
                  } else if (d3 - d2 > Math.PI) {
                    k++;
                    d4 = k * Constants.PI2;
                  }
                  d2 += d4;
                  d3 = d2;
                  d2 /= 2;
                  reOutBuf[ch][i] += (float) (d1 * Math.cos(d2));
                  imOutBuf[ch][i] += (float) (d1 * Math.sin(d2));
                }
                phi[ch] = d3;
                wrap[ch] = k;

              } else {
                for (i = 0; i < len; i++) {
                  f1 = convBuf1[i];
                  if (f1 > 0) {
                    reOutBuf[ch][i] += wetGain * (float) Math.sqrt(f1);
                  } // else undefiniert
                }
              }
              break;

            case OP_RECT2POLARW: // ================ Rect->Polar (wrapped) ================
              for (i = 0; i < len; i++) {
                d1 = wetGain * Math.sqrt(convBuf1[i] * convBuf1[i] + convBuf2[i] * convBuf2[i]);
                d2 = Math.atan2(convBuf2[i], convBuf1[i]);
                reOutBuf[ch][i] += (float) d1;
                imOutBuf[ch][i] += (float) d2;
              }
              break;

            case OP_RECT2POLAR: // ================ Rect->Polar ================
              d3 = phi[ch];
              k = wrap[ch];
              d4 = k * Constants.PI2;
              for (i = 0; i < len; i++) {
                d1 = wetGain * Math.sqrt(convBuf1[i] * convBuf1[i] + convBuf2[i] * convBuf2[i]);
                d2 = Math.atan2(convBuf2[i], convBuf1[i]);
                if (d2 - d3 > Math.PI) {
                  k--;
                  d4 = k * Constants.PI2;
                } else if (d3 - d2 > Math.PI) {
                  k++;
                  d4 = k * Constants.PI2;
                }
                d2 += d4;
                reOutBuf[ch][i] += (float) d1;
                imOutBuf[ch][i] += (float) d2;
                d3 = d2;
              }
              phi[ch] = d3;
              wrap[ch] = k;
              break;

            case OP_POLAR2RECT: // ================ Polar->Rect ================
              for (i = 0; i < len; i++) {
                f1 = wetGain * convBuf1[i];
                reOutBuf[ch][i] += f1 * (float) Math.cos(convBuf2[i]);
                imOutBuf[ch][i] += f1 * (float) Math.sin(convBuf2[i]);
              }
              break;

            case OP_LOG: // ================ Log ================
              if (complex) {
                d3 = phi[ch];
                k = wrap[ch];
                d4 = k * Constants.PI2;
                d5 = carry[ch];
                for (i = 0; i < len; i++) {
                  d1 = Math.sqrt(convBuf1[i] * convBuf1[i] + convBuf2[i] * convBuf2[i]);
                  d2 = Math.atan2(convBuf2[i], convBuf1[i]);
                  if (d2 - d3 > Math.PI) {
                    k--;
                    d4 = k * Constants.PI2;
                  } else if (d3 - d2 > Math.PI) {
                    k++;
                    d4 = k * Constants.PI2;
                  }
                  if (d1 > 0.0) {
                    d5 = Math.log(d1);
                  }
                  d2 += d4;
                  reOutBuf[ch][i] += (float) d5;
                  imOutBuf[ch][i] += (float) d2;
                  d3 = d2;
                }
                phi[ch] = d3;
                wrap[ch] = k;
                carry[ch] = d5;

              } else {
                for (i = 0; i < len; i++) {
                  f1 = convBuf1[i];
                  if (f1 > 0) {
                    reOutBuf[ch][i] += wetGain * (float) Math.log(f1);
                  } // else undefiniert
                }
              }
              break;

            case OP_EXP: // ================ Exp ================
              if (complex) {
                for (i = 0; i < len; i++) {
                  d1 = wetGain * Math.exp(convBuf1[i]);
                  reOutBuf[ch][i] += (float) (d1 * Math.cos(convBuf2[i]));
                  imOutBuf[ch][i] += (float) (d1 * Math.sin(convBuf2[i]));
                }
              } else {
                for (i = 0; i < len; i++) {
                  reOutBuf[ch][i] += wetGain * (float) Math.exp(convBuf1[i]);
                }
              }
              break;

            case OP_NOT: // ================ NOT ================
              for (i = 0; i < len; i++) {
                lo = ~((long) (convBuf1[i] * 2147483647.0));
                reOutBuf[ch][i] += wetGain * (float) ((lo & 0xFFFFFFFFL) / 2147483647.0);
              }
              if (complex) {
                for (i = 0; i < len; i++) {
                  lo = ~((long) (convBuf2[i] * 2147483647.0));
                  imOutBuf[ch][i] += wetGain * (float) ((lo & 0xFFFFFFFFL) / 2147483647.0);
                }
              }
              break;
          }
        } // for outChan
        progOff += len;
        // .... progress ....
        setProgression((float) progOff / (float) progLen);
        // .... check running ....
        if (!threadRunning) break topLevel;

        // ---- write output chunk ----
        if (reFloatF != null) {
          for (ch = 0; ch < outChanNum; ch++) {
            reFloatF[ch].writeFloats(reOutBuf[ch], 0, len);
            if (pr.bool[PR_HASIMOUTPUT]) {
              imFloatF[ch].writeFloats(imOutBuf[ch], 0, len);
            }
          }
        } else {
          reOutF.writeFrames(reOutBuf, 0, len);
          if (pr.bool[PR_HASIMOUTPUT]) {
            imOutF.writeFrames(imOutBuf, 0, len);
          }
        }
        // check max amp
        for (ch = 0; ch < outChanNum; ch++) {
          convBuf1 = reOutBuf[ch];
          for (i = 0; i < len; i++) {
            f1 = Math.abs(convBuf1[i]);
            if (f1 > maxAmp) {
              maxAmp = f1;
            }
          }
          if (pr.bool[PR_HASIMOUTPUT]) {
            convBuf1 = imOutBuf[ch];
            for (i = 0; i < len; i++) {
              f1 = Math.abs(convBuf1[i]);
              if (f1 > maxAmp) {
                maxAmp = f1;
              }
            }
          }
        }

        progOff += len;
        framesWritten += len;
        // .... progress ....
        setProgression((float) progOff / (float) progLen);
      } // while not framesWritten

      // ----==================== normalize output ====================----

      if (pr.intg[PR_GAINTYPE] == GAIN_UNITY) {
        peakGain = new Param(maxAmp, Param.ABS_AMP);
        gain =
            (float)
                (Param.transform(
                        pr.para[PR_GAIN],
                        Param.ABS_AMP,
                        new Param(1.0 / peakGain.value, peakGain.unit),
                        null))
                    .value;
        f1 = pr.bool[PR_HASIMOUTPUT] ? ((1.0f + getProgression()) / 2) : 1.0f;
        normalizeAudioFile(reFloatF, reOutF, reOutBuf, gain, f1);
        if (pr.bool[PR_HASIMOUTPUT]) {
          normalizeAudioFile(imFloatF, imOutF, imOutBuf, gain, 1.0f);
        }
        maxAmp *= gain;

        for (ch = 0; ch < outChanNum; ch++) {
          reFloatF[ch].cleanUp();
          reFloatF[ch] = null;
          reTempFile[ch].delete();
          reTempFile[ch] = null;
          if (pr.bool[PR_HASIMOUTPUT]) {
            imFloatF[ch].cleanUp();
            imFloatF[ch] = null;
            imTempFile[ch].delete();
            imTempFile[ch] = null;
          }
        }
      }
      // .... check running ....
      if (!threadRunning) break topLevel;

      // ---- Finish ----

      reOutF.close();
      reOutF = null;
      reOutStream = null;
      if (imOutF != null) {
        imOutF.close();
        imOutF = null;
        imOutStream = null;
      }
      reInF.close();
      reInF = null;
      reInStream = null;
      if (pr.bool[PR_HASIMINPUT]) {
        imInF.close();
        imInF = null;
        imInStream = null;
      }
      reOutBuf = null;
      imOutBuf = null;
      reInBuf = null;
      imInBuf = null;

      // inform about clipping/ low level
      handleClipping(maxAmp);
    } catch (IOException e1) {
      setError(e1);
    } catch (OutOfMemoryError e2) {
      reOutBuf = null;
      imOutBuf = null;
      reInBuf = null;
      imInBuf = null;
      convBuf1 = null;
      convBuf2 = null;
      System.gc();

      setError(new Exception(ERR_MEMORY));
    }

    // ---- cleanup (topLevel) ----
    convBuf1 = null;
    convBuf2 = null;

    if (reInF != null) {
      reInF.cleanUp();
      reInF = null;
    }
    if (imInF != null) {
      imInF.cleanUp();
      imInF = null;
    }
    if (reOutF != null) {
      reOutF.cleanUp();
      reOutF = null;
    }
    if (imOutF != null) {
      imOutF.cleanUp();
      imOutF = null;
    }
    if (reFloatF != null) {
      for (ch = 0; ch < reFloatF.length; ch++) {
        if (reFloatF[ch] != null) {
          reFloatF[ch].cleanUp();
          reFloatF[ch] = null;
        }
        if (reTempFile[ch] != null) {
          reTempFile[ch].delete();
          reTempFile[ch] = null;
        }
      }
    }
    if (imFloatF != null) {
      for (ch = 0; ch < imFloatF.length; ch++) {
        if (imFloatF[ch] != null) {
          imFloatF[ch].cleanUp();
          imFloatF[ch] = null;
        }
        if (imTempFile[ch] != null) {
          imTempFile[ch].delete();
          imTempFile[ch] = null;
        }
      }
    }
  } // process()