private cardTest() { // Instantiate all object the applet will ever need // pin= new OwnerPIN(MAX_LENGTH, MAX_ATTEMPTS); // if(bArray==null){//check // If no pin is passed as parameter at installation time use default 0000 // pin.update(new byte[] {0x00,0x00,0x00,0x00}, (short) 0, (byte) 0x04); // } // else { // pin.update(bArray, bOffset, bLength); // } try { // Set signature algorithm sig = Signature.getInstance(Signature.ALG_RSA_SHA_PKCS1, false); // Generate the card keys keys.genKeyPair(); // Get the public key k = (RSAPublicKey) keys.getPublic(); // Get the private key k2 = (RSAPrivateKey) keys.getPrivate(); // Initialize the signature object with card private key sig.init(k2, Signature.MODE_SIGN); } catch (CryptoException ex) { ISOException.throwIt((short) (ex.getReason())); } catch (SecurityException ex) { ISOException.throwIt((short) (0x6F10)); } catch (Exception ex) { ISOException.throwIt((short) (0x6F20)); } }
/** * Get <code>ECPublicKeyParameters</code> * * @return parameters for use with BouncyCastle API * @see ECPublicKeyParameters */ public CipherParameters getParameters() { if (!isInitialized()) { CryptoException.throwIt(CryptoException.UNINITIALIZED_KEY); } ECDomainParameters dp = getDomainParameters(); return new ECPublicKeyParameters( dp.getCurve().decodePoint(w.getBytes(JCSystem.CLEAR_ON_RESET)), dp); }
/** * Pads the input according to the RSASSA-PSS algorithm, the result is placed in output. The input * should be 20-byte SHA1 hash of the message to be signed. This method *does not* do signing * (encrypting) itself. Due to the randomness of this algorithm the subsequent signing may fail * (when the result of this method is larger than the key modulus) in which case the padding * should be attempted again. */ private void pssPad( byte[] input, short inOffset, short hashLen, byte[] output, short outputOffset, short emLen, byte firstKeyByte) throws CryptoException { do { short hLen = hashLen; short outOffset = outputOffset; if (hLen != SHA1_LEN || (short) (inOffset + hLen) > input.length || (short) (outOffset + emLen) > output.length) { CryptoException.throwIt(CryptoException.ILLEGAL_VALUE); } short sLen = SHA1_LEN; short psLen = (short) (emLen - sLen - hLen - 2); Util.arrayFillNonAtomic(output, outOffset, emLen, (byte) 0x00); md.update(output, outOffset, (short) 8); md.update(input, inOffset, hLen); rd.generateData(output, (short) (outOffset + psLen + 1), sLen); md.doFinal(output, (short) (outOffset + psLen + 1), sLen, tmp, TMP_HASH_OFFSET); output[(short) (outOffset + psLen)] = (byte) 0x01; Util.arrayFillNonAtomic(output, outOffset, psLen, (byte) 0x00); short hOffset = (short) (outOffset + emLen - hLen - 1); Util.arrayCopyNonAtomic(tmp, TMP_HASH_OFFSET, output, hOffset, hLen); output[(short) (outOffset + emLen - 1)] = (byte) 0xbc; tmp[(short) (TMP_C_OFFSET + C_LEN - 1)] = 0; while (outOffset < hOffset) { md.update(output, hOffset, hLen); md.doFinal(tmp, TMP_C_OFFSET, C_LEN, tmp, TMP_HASH_OFFSET); if ((short) (outOffset + hLen) > hOffset) { hLen = (short) (hOffset - outOffset); } for (short i = 0; i < hLen; i++) { output[outOffset++] ^= tmp[(short) (TMP_HASH_OFFSET + i)]; } tmp[(short) (TMP_C_OFFSET + C_LEN - 1)]++; } } while (firstKeyByte <= tmp[TMP_OFFSET]); }