/** * Parses a given list of options. * * @param options the list of options as an array of strings * @exception Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { String optionString = Utils.getOption('A', options); if (optionString.length() != 0) setAlphaStar(Double.parseDouble(optionString)); optionString = Utils.getOption('S', options); if (optionString.length() != 0) setSigma(Double.parseDouble(optionString)); optionString = Utils.getOption('R', options); if (optionString.length() != 0) setR(Double.parseDouble(optionString)); setUseSparseMatrix(Utils.getFlag('M', options)); }
/** * Parses a given list of options. * * @param options the list of options as an array of strings * @exception Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { // Other options String minNumString = Utils.getOption('M', options); if (minNumString.length() != 0) { m_minNumObj = Integer.parseInt(minNumString); } else { m_minNumObj = 2; } m_binarySplits = Utils.getFlag('B', options); m_useLaplace = Utils.getFlag('A', options); // Pruning options m_unpruned = Utils.getFlag('U', options); m_subtreeRaising = !Utils.getFlag('S', options); m_noCleanup = Utils.getFlag('L', options); if ((m_unpruned) && (!m_subtreeRaising)) { throw new Exception("Subtree raising doesn't need to be unset for unpruned tree!"); } m_reducedErrorPruning = Utils.getFlag('R', options); if ((m_unpruned) && (m_reducedErrorPruning)) { throw new Exception( "Unpruned tree and reduced error pruning can't be selected " + "simultaneously!"); } String confidenceString = Utils.getOption('C', options); if (confidenceString.length() != 0) { if (m_reducedErrorPruning) { throw new Exception( "Setting the confidence doesn't make sense " + "for reduced error pruning."); } else if (m_unpruned) { throw new Exception("Doesn't make sense to change confidence for unpruned " + "tree!"); } else { m_CF = (new Float(confidenceString)).floatValue(); if ((m_CF <= 0) || (m_CF >= 1)) { throw new Exception("Confidence has to be greater than zero and smaller " + "than one!"); } } } else { m_CF = 0.25f; } String numFoldsString = Utils.getOption('N', options); if (numFoldsString.length() != 0) { if (!m_reducedErrorPruning) { throw new Exception( "Setting the number of folds" + " doesn't make sense if" + " reduced error pruning is not selected."); } else { m_numFolds = Integer.parseInt(numFoldsString); } } else { m_numFolds = 3; } }
/** * Parses a given list of options. * * @param options the list of options as an array of strings * @exception Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { String optionString = Utils.getOption('N', options); if (optionString.length() != 0) { setNumClusters(Integer.parseInt(optionString)); } optionString = Utils.getOption('S', options); if (optionString.length() != 0) { setSeed(Integer.parseInt(optionString)); } }
/** * Parses a given list of options. Valid options are: * * <p>-D <br> * Turn on debugging output. * * <p>-W classname <br> * Specify the full class name of a weak classifier as the basis for Decorate (required). * * <p>-E num <br> * Specify the desired size of the committee (default 10). * * <p>-I iterations <br> * Set the maximum number of Decorate iterations (default 10). * * <p>-S seed <br> * Seed for random number generator. (default 0). * * <p>-R factor <br> * Factor that determines number of artificial examples to generate. * * <p>Options after -- are passed to the designated classifier. * * <p> * * @param options the list of options as an array of strings * @exception Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { String desiredSize = Utils.getOption('E', options); if (desiredSize.length() != 0) { setDesiredSize(Integer.parseInt(desiredSize)); } else { setDesiredSize(10); } String artSize = Utils.getOption('R', options); if (artSize.length() != 0) { setArtificialSize(Double.parseDouble(artSize)); } else { setArtificialSize(1.0); } super.setOptions(options); }
/** * loads the given dataset and prints the Capabilities necessary to process it. * * <p>Valid parameters: * * <p>-file filename <br> * the file to load * * <p>-c index the explicit index of the class attribute (default: none) * * @param args the commandline arguments * @throws Exception if something goes wrong */ public static void main(String[] args) throws Exception { String tmpStr; String filename; DataSource source; Instances data; int classIndex; Capabilities cap; Iterator iter; if (args.length == 0) { System.out.println( "\nUsage: " + Capabilities.class.getName() + " -file <dataset> [-c <class index>]\n"); return; } // get parameters tmpStr = Utils.getOption("file", args); if (tmpStr.length() == 0) throw new Exception("No file provided with option '-file'!"); else filename = tmpStr; tmpStr = Utils.getOption("c", args); if (tmpStr.length() != 0) { if (tmpStr.equals("first")) classIndex = 0; else if (tmpStr.equals("last")) classIndex = -2; // last else classIndex = Integer.parseInt(tmpStr) - 1; } else { classIndex = -3; // not set } // load data source = new DataSource(filename); if (classIndex == -3) data = source.getDataSet(); else if (classIndex == -2) data = source.getDataSet(source.getStructure().numAttributes() - 1); else data = source.getDataSet(classIndex); // determine and print capabilities cap = forInstances(data); System.out.println("File: " + filename); System.out.println( "Class index: " + ((data.classIndex() == -1) ? "not set" : "" + (data.classIndex() + 1))); System.out.println("Capabilities:"); iter = cap.capabilities(); while (iter.hasNext()) System.out.println("- " + iter.next()); }
/** * Parses a given list of options. Valid options are: * * <p>-D <br> * Turn on debugging output. * * <p>-S seed <br> * Random number seed (default 1). * * <p>-B classifierstring <br> * Classifierstring should contain the full class name of a scheme included for selection followed * by options to the classifier (required, option should be used once for each classifier). * * <p>-X num_folds <br> * Use cross validation error as the basis for classifier selection. (default 0, is to use error * on the training data instead) * * <p> * * @param options the list of options as an array of strings * @exception Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { setDebug(Utils.getFlag('D', options)); String numFoldsString = Utils.getOption('X', options); if (numFoldsString.length() != 0) { setNumFolds(Integer.parseInt(numFoldsString)); } else { setNumFolds(0); } String randomString = Utils.getOption('S', options); if (randomString.length() != 0) { setSeed(Integer.parseInt(randomString)); } else { setSeed(1); } // Iterate through the schemes FastVector classifiers = new FastVector(); while (true) { String classifierString = Utils.getOption('B', options); if (classifierString.length() == 0) { break; } String[] classifierSpec = Utils.splitOptions(classifierString); if (classifierSpec.length == 0) { throw new Exception("Invalid classifier specification string"); } String classifierName = classifierSpec[0]; classifierSpec[0] = ""; classifiers.addElement(Classifier.forName(classifierName, classifierSpec)); } if (classifiers.size() <= 1) { throw new Exception("At least two classifiers must be specified" + " with the -B option."); } else { Classifier[] classifiersArray = new Classifier[classifiers.size()]; for (int i = 0; i < classifiersArray.length; i++) { classifiersArray[i] = (Classifier) classifiers.elementAt(i); } setClassifiers(classifiersArray); } }
/** * Parses the options for this object. * * <p> * <!-- options-start --> * Valid options are: * * <p> * * <pre> -S <search method specification> * Full class name of search method, followed * by its options. * eg: "weka.attributeSelection.BestFirst -D 1" * (default weka.attributeSelection.BestFirst)</pre> * * <pre> -X <number of folds> * Use cross validation to evaluate features. * Use number of folds = 1 for leave one out CV. * (Default = leave one out CV)</pre> * * <pre> -E <acc | rmse | mae | auc> * Performance evaluation measure to use for selecting attributes. * (Default = accuracy for discrete class and rmse for numeric class)</pre> * * <pre> -I * Use nearest neighbour instead of global table majority.</pre> * * <pre> -R * Display decision table rules. * </pre> * * <pre> * Options specific to search method weka.attributeSelection.BestFirst: * </pre> * * <pre> -P <start set> * Specify a starting set of attributes. * Eg. 1,3,5-7.</pre> * * <pre> -D <0 = backward | 1 = forward | 2 = bi-directional> * Direction of search. (default = 1).</pre> * * <pre> -N <num> * Number of non-improving nodes to * consider before terminating search.</pre> * * <pre> -S <num> * Size of lookup cache for evaluated subsets. * Expressed as a multiple of the number of * attributes in the data set. (default = 1)</pre> * * <!-- options-end --> * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { String optionString; resetOptions(); optionString = Utils.getOption('X', options); if (optionString.length() != 0) { m_CVFolds = Integer.parseInt(optionString); } m_useIBk = Utils.getFlag('I', options); m_displayRules = Utils.getFlag('R', options); optionString = Utils.getOption('E', options); if (optionString.length() != 0) { if (optionString.equals("acc")) { setEvaluationMeasure(new SelectedTag(EVAL_ACCURACY, TAGS_EVALUATION)); } else if (optionString.equals("rmse")) { setEvaluationMeasure(new SelectedTag(EVAL_RMSE, TAGS_EVALUATION)); } else if (optionString.equals("mae")) { setEvaluationMeasure(new SelectedTag(EVAL_MAE, TAGS_EVALUATION)); } else if (optionString.equals("auc")) { setEvaluationMeasure(new SelectedTag(EVAL_AUC, TAGS_EVALUATION)); } else { throw new IllegalArgumentException("Invalid evaluation measure"); } } String searchString = Utils.getOption('S', options); if (searchString.length() == 0) searchString = weka.attributeSelection.BestFirst.class.getName(); String[] searchSpec = Utils.splitOptions(searchString); if (searchSpec.length == 0) { throw new IllegalArgumentException("Invalid search specification string"); } String searchName = searchSpec[0]; searchSpec[0] = ""; setSearch(ASSearch.forName(searchName, searchSpec)); }