@Override public boolean addJobToCurrent(Job j) throws Exception { IAtomicReference<Job> r = h.getAtomicReference("job-" + j.getWorkerId()); if (r.get() != null || !r.isNull()) { boolean sent = false; while (!sent) { // always update for (String s : workers()) { if (jobFor(s) == null) { log.info( "Redirecting worker " + j.getWorkerId() + " to " + s + " due to work already being allocated"); r = h.getAtomicReference("job-" + s); j.setWorkerId(s); sent = true; } } } } r.set(j); // iterate over jobs without the work/data j.setWork(null); jobs.add(j); return true; }
private static double computePo( final IScope scope, final IAgentFilter filter, final Map<Object, Integer> categoriesId, final GamaMatrix<Double> fuzzytransitions, final Double distance, final IList<Object> valsInit, final IList<Object> valsObs, final IList<Object> valsSim, final IAddressableContainer<Integer, IAgent, Integer, IAgent> agents, final int nbCat, final int nb, final IList<Double> similarities, final IList<Object> weights) { Map<IAgent, Integer> agsId = new TOrderedHashMap<IAgent, Integer>(); for (int i = 0; i < agents.length(scope); i++) { agsId.put(agents.get(scope, i), i); } for (int i = 0; i < nb; i++) { Object valObs = valsObs.get(i); Object valSim = valsSim.get(i); Object valInit = valsInit.get(i); int valObsId = categoriesId.get(valObs); int valSimId = categoriesId.get(valSim); int valInitId = categoriesId.get(valInit); IAgent agent = agents.get(scope, i); double[] XaXs = computeXaXs( scope, filter, categoriesId, agsId, valObsId, valSimId, valInitId, fuzzytransitions, distance, agent, valsInit, valsObs, valsSim, agents, nbCat); similarities.add(FastMath.min(XaXs[0], XaXs[1])); } double meanSimilarity = 0; double total = 0; for (int i = 0; i < nb; i++) { double weight = weights == null ? 1.0 : Cast.asFloat(scope, weights.get(i)); double val = weight * similarities.get(i); total += weight; meanSimilarity += val; } meanSimilarity /= total; return meanSimilarity; }
@Override public void addWorker(String worker) { heartbeat.put(worker, System.currentTimeMillis()); if (!workers.contains(worker)) { log.info("Adding worker " + worker); workers.add(worker); log.info("Number of workers is now " + workers.size()); } }
/** * Adds an update to the current mini batch * * @param id the id of the worker who did the update * @param update the update to add */ @Override public void addUpdate(String id, E update) { try { updateSaver().save(id, update); } catch (Exception e) { throw new RuntimeException(e); } updates.add(id); }
@Override public IList<ISpecies> getSubSpecies(final IScope scope) { IList<ISpecies> subspecies = GamaListFactory.create(Types.SPECIES); GamlModelSpecies model = (GamlModelSpecies) scope.getModel().getSpecies(); for (ISpecies s : model.getAllSpecies().values()) { if (s.getParentSpecies() == this) { subspecies.add(s); } } return subspecies; }
private static int buildRings( final IScope scope, final IAgentFilter filter, final Double distance, final List<Double> rings, final Map<Double, Integer> ringsPn, final IAddressableContainer<Integer, IAgent, Integer, IAgent> agents) { IList<ILocation> locs = GamaListFactory.create(Types.POINT); for (IAgent ag : agents.iterable(scope)) { locs.add(ag.getLocation()); } ILocation centralLoc = (ILocation) Stats.getMean(scope, locs); IAgent centralAg = scope.getTopology().getAgentClosestTo(scope, centralLoc, filter); List<IAgent> neighbors = distance == 0 || filter == null ? new ArrayList<IAgent>() : new ArrayList<IAgent>( scope.getTopology().getNeighborsOf(scope, centralAg, distance, filter)); for (IAgent ag : neighbors) { double dist = centralLoc.euclidianDistanceTo(ag.getLocation()); if (dist == 0) { continue; } if (!rings.contains(dist)) { rings.add(dist); ringsPn.put(dist, 1); } else { ringsPn.put(dist, 1 + ringsPn.get(dist)); } } Collections.sort(rings); for (int i = 1; i < rings.size(); i++) { double dist = rings.get(i); double dist1 = rings.get(i - 1); ringsPn.put(dist, ringsPn.get(dist) + ringsPn.get(dist1)); } return rings.size(); }
private static double computeSimilarity( final IScope scope, final IAgentFilter filter, final Double distance, final IList<Object> vals1, final IList<Object> vals2, final IAddressableContainer<Integer, IAgent, Integer, IAgent> agents, final int nbCat, final int nb, final double[][] crispVector1, final double[][] crispVector2, final boolean[] sim, final double[][] fuzzyVector1, final double[][] fuzzyVector2, final IList<Double> similarities, final IList<Object> weights) { Map<IAgent, Integer> agsId = new TOrderedHashMap<IAgent, Integer>(); for (int i = 0; i < agents.length(scope); i++) { agsId.put(agents.get(scope, i), i); } for (int i = 0; i < nb; i++) { if (sim[i]) { similarities.add(1.0); } else { IAgent agent = agents.get(scope, i); // double sizeNorm = agent.getPerimeter() / 4.0; double sizeNorm = FastMath.sqrt(agent.getEnvelope().getArea()); List<IAgent> neighbors = distance == 0 || filter == null ? new ArrayList<IAgent>() : new ArrayList<IAgent>( scope.getTopology().getNeighborsOf(scope, agent, distance, filter)); Map<IAgent, Double> distancesCoeff = new TOrderedHashMap<IAgent, Double>(); distancesCoeff.put(agent, 1.0); for (IAgent ag : neighbors) { double euclidDist = agent.getLocation().euclidianDistanceTo(ag.getLocation()); distancesCoeff.put(ag, 1 / (1.0 + euclidDist / sizeNorm)); } for (int j = 0; j < nbCat; j++) { double max1 = 0.0; double max2 = 0.0; for (IAgent ag : neighbors) { int id = agsId.get(ag); double val1 = crispVector1[id][j] * distancesCoeff.get(ag); double val2 = crispVector2[id][j] * distancesCoeff.get(ag); if (val1 > max1) { max1 = val1; } if (val2 > max2) { max2 = val2; } } fuzzyVector1[i][j] = max1; fuzzyVector2[i][j] = max2; } double s1Max = -1 * Double.MAX_VALUE; double s2Max = -1 * Double.MAX_VALUE; for (int j = 0; j < nbCat; j++) { double s1 = FastMath.min(fuzzyVector1[i][j], crispVector2[i][j]); double s2 = FastMath.min(fuzzyVector2[i][j], crispVector1[i][j]); if (s1 > s1Max) { s1Max = s1; } if (s2 > s2Max) { s2Max = s2; } } similarities.add(FastMath.min(s1Max, s2Max)); } } double meanSimilarity = 0; double total = 0; for (int i = 0; i < nb; i++) { double weight = weights == null ? 1.0 : Cast.asFloat(scope, weights.get(i)); double val = weight * similarities.get(i); total += weight; meanSimilarity += val; } meanSimilarity /= total; return meanSimilarity; }
private static void computeXaXsTransitions( final IScope scope, final IAgentFilter filter, final GamaMatrix<Double> fuzzytransitions, final Double distance, final IContainer<Integer, IAgent> agents, final int nbCat, final Map<List<Integer>, Map<Double, Double>> XaPerTransition, final Map<List<Integer>, Map<Double, Double>> XsPerTransition, final Set<Double> Xvals) { IList<ILocation> locs = GamaListFactory.create(Types.POINT); for (IAgent ag : agents.iterable(scope)) { locs.add(ag.getLocation()); } ILocation centralLoc = (ILocation) Stats.getMean(scope, locs); if (filter != null) { IAgent centralAg = scope.getTopology().getAgentClosestTo(scope, centralLoc, filter); List<IAgent> neighbors = distance == 0 ? new ArrayList<IAgent>() : new ArrayList<IAgent>( scope.getTopology().getNeighborsOf(scope, centralAg, distance, filter)); double sizeNorm = FastMath.sqrt(centralAg.getEnvelope().getArea()); Map<IAgent, Double> distancesCoeff = new TOrderedHashMap<IAgent, Double>(); distancesCoeff.put(centralAg, 1.0); for (IAgent ag : neighbors) { double euclidDist = centralAg.getLocation().euclidianDistanceTo(ag.getLocation()); double dist = 1 / (1.0 + euclidDist / sizeNorm); distancesCoeff.put(ag, dist); } for (int i = 0; i < nbCat; i++) { for (int j = 0; j < nbCat; j++) { for (int k = 0; k < nbCat; k++) { List<Integer> ca = new ArrayList(); ca.add(i); ca.add(j); ca.add(k); double xa = 0; double xs = 0; for (IAgent ag : distancesCoeff.keySet()) { double dist = distancesCoeff.get(ag); double xatmp = fuzzyTransition(scope, fuzzytransitions, nbCat, i, k, i, j) * dist; double xstmp = fuzzyTransition(scope, fuzzytransitions, nbCat, i, j, i, k) * dist; if (xatmp > xa) { xa = xatmp; } if (xstmp > xs) { xs = xstmp; } } if (xa > 0) { Map<Double, Double> mapxa = XaPerTransition.get(ca); if (mapxa == null) { mapxa = new TOrderedHashMap<Double, Double>(); mapxa.put(xa, 1.0); XaPerTransition.put(ca, mapxa); } else { if (mapxa.containsKey(xa)) { mapxa.put(xa, mapxa.get(xa) + 1.0); } else { mapxa.put(xa, 1.0); } } Xvals.add(xa); } if (xs > 0) { Map<Double, Double> mapxs = XsPerTransition.get(ca); if (mapxs == null) { mapxs = new TOrderedHashMap<Double, Double>(); mapxs.put(xs, 1.0); XsPerTransition.put(ca, mapxs); } else { if (mapxs.containsKey(xa)) { mapxs.put(xs, mapxs.get(xs) + 1.0); } else { mapxs.put(xs, 1.0); } } Xvals.add(xs); } } } } } }
@Override public void availableForWork(String id) { if (!workers.contains(id)) workers.add(id); }
@Override public void addTopic(String topic) throws Exception { topics.add(topic); }
/** * Adds a worker to the list to be replicate d * * @param workerId the worker id to add */ @Override public void addReplicate(String workerId) { if (!replicate.contains(workerId)) replicate.add(workerId); }